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Mentor: dr Aleksandar Nastić, full professor, Faculty of Science and Mathematics,

University of Nǐs
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learn that if it’s to much, even the warmth of the sun can burn.

So you plant your own garden and embellish your own soul, instead of waiting for someone
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Over time you learn that real friends are few and whoever doesn’t fight for them, sooner
or later, will find himself surrounded only with false friendships. Over time you learn
the word spoken in moments of anger continue hurting throughout a lifetime. Over time
you learn that everyone can apologize, but forgiveness is an attribute solely of great souls.
Over time you realize that every experience lived, with each person, is unrepeatable. Over
time you comprehend that rushing things or forcing them to happen causes the finale to
be different from expected. Over time you realize that in fact the best was not the future,
but the moment you were living just that instant.

But unfortunately, only over time...

Jorge Luis Borges

In addition to the already mentioned, over time I have learned to show gratitude, to say
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had been a remarkable mentor, he had been a remarkable person. He offered me some-
thing that many never get, a second chance. I am grateful for all the knowledge, patience
and wisdom he shared with me through all these years.

Many thanks go to the members of the commission for evaluation and defense of doc-
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Popović and prof. dr Miodrag -Dord̄ević for great attention they paid to this dissertation
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Abstract

This dissertation has 2 basic goals. The first goal is to construct the random environment
INAR time series that can take both positive and negative values. The realization of
such goal would create new possibilities in integer-valued data modeling. In addition,
since the environment state estimation of each individual realization is a crucial step in
real-life data modeling using models in random environment, the goal is to adapt existing
clustering techniques in order to make the environment state estimates more accurate.
Both goals, if realized, would represent an original authorial contribution to the integer-
valued time series analysis.

The dissertation contains 4 chapters. Chapter 1 is the introductory one and provides a
historical overview of the INAR models development. Also, this chapter offers important
theorems and distributions known from before, necessary to adduce proofs in subsequent
chapters. Relying on results given in [15], Chapter 2 discusses possibilities of extracting
and predicting latent components of the true INAR time series with skewed Skellam
marginal distribution. In Chapter 3, a construction of the new non-stationary random
environment INAR model with values over entire Z is given. Unknown model parameters
are estimated using adapted estimation techniques. The efficiency of estimates is tested
on simulated data. A quality of the introduced model is examined on appropriate real-life
data. In Chapter 4, the K-means clustering technique adaptation is provided, in order
to make it suitable for estimating environment states of realizations corresponding to the
generalized random environment INAR time series. The adaptation efficiency is tested
on simulated and real-life data and compared to clustering results obtained using standard
K-means.

Key words: INAR(1), DLINAR(1), thinning operator, random environment, dis-
crete Laplace marginals, geometric marginals, K-means technique, state estimation, Mark-
ov chain
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Abstrakt

Ova disertacija ima 2 cilja. Najpre, cilj disertacije je konstrukcija novih INAR vremen-
skih serija u slučajnoj okolini koji mogu uzeti kako pozitivne, tako i negativne vrednosti.
Uspešna realizacija ovog cilja donela bi nove mogućnosti u modeliranju celobrojnih nizova
podataka. Dodatno, kako je ocena stanja okoline svake realizacije ključni korak u modeli-
ranju stvarnih procesa pomoću novouvedenih modela u slučajnoj okolini, cilj disertacije
je prilagod̄avanje postojećih metoda klasterovanja sa namerom da ocene stanja budu što
preciznije. Oba navedena cilja bi, u slučaju realizacije, predstavljala originalan doprinos
autora analizi celobrojnih vremenskih serija.

Disertacija sadrži 4 glave. Glava 1 je uvodnog karaktera i daje istorijski pregled razvoja
INAR modela. Takod̄e, ova glava nudi neke bitne teoreme i raspodele poznate od ranije,
neophodne za izvod̄enje dokaza u narednim glavama. Oslanjajući se na rezultate date u
[15], u Glavi 2 su razmotrene mogućnosti identifikovanja i predvid̄anja latentnih kompo-
nenti INAR vremenske serije sa asimetričnom Skelamovom marginalnom raspodelom. U
Glavi 3 pristupa se konstrukciji novog nestacionarnog INAR modela u slučajnoj okolini
koji može uzeti vrednosti na čitavom skupu Z. Nepoznati parametri modela ocenjeni su
pomoću prilagod̄enih tehnika ocenjivanja. Efikasnost ocena je testirana na simuliranim
podacima. Kvalitet modela ispitan je na odgovarajućim realnim nizovima podataka. U
Glavi 4 pristupa se adaptaciji K-means tehnike klasterovanja, sa ciljem da se ona pri-
lagodi ocenjivanju stanja okoline realizacija koje odgovaraju uopštenoj INAR vremen-
skoj seriji u slučajnoj okolini. Efikasnost adaptacije testirana je na simuliranim podacima
i upored̄ena sa rezultatima klasterovanja dobijenim pomoću standardne K-means tehnike.

Ključne reči: INAR(1), DLINAR(1), tining operator, slučajna okolina, diskretna
Laplasova marginalna raspodela, geometrijska marginalna raspodela, K-means tehnika,
ocena stanja, lanac Markova
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Chapter 1

INAR models-from the very
beginnings to the present day

1.1 Introduction

Many natural or social phenomena often have different outcomes, despite the same cir-
cumstances in which they take place. These outcomes might be observed as realizations
of some random variables, and thus become suitable to be described by usage of particular
statistical model.

Let one observe the outcomes of a phenomenon of interest in equal time intervals. Then,
the obtained outcomes represent the realization of one time series. In order to define
the term ”time series”, a more general term from which this new term derives must be
mentioned first. To that purpose, let (Ω,F ,Pm) be a probability space, where Ω represents
the set of all possible outcomes of the experiment, F represents σ-algebra of events made
of outcomes from Ω and Pm represents a probability measure.

Definition 1.1.1 ([7], Definition 1.2.1). A stochastic process is a family of random vari-
ables {Xt, t ∈ T} defined on a probability space (Ω,F ,Pm), where T is an index set.

Different types of stochastic processes can be noticed, depending on the cardinality of the
index set. A stochastic process is said to be a continuous-time stochastic process if the
index set T is uncountably infinite set. On the other hand, a stochastic process is said
to be in discrete time, if the index set T has finite or countable number of elements. In
particular, a stochastic process whose index set is a subset of the set of integers Z is of
special importance for this research.

Definition 1.1.2. A time series is a stochastic process {Xt, t ∈ Z} defined on the proba-
bility space (Ω,F ,Pm).

Remark . In probability theory, the term ”time series” usually represents a stochastic
process in discrete time. However, this term may denote the sequence of observed values
of the stochastic process, that is, a realization of the stochastic process. By agreement, the
same term is used in literature to denote the stochastic process itself and its realization.
This agreement will be followed in this dissertation as well.

The basic problem is to choose the proper time series model, which would be a good rep-
resentation of the observed real-life data. The data can occur, for instance, as a result of
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registering the values of the particular phenomenon, or as a result of counting realizations
of the phenomenon in corresponding time intervals. Many factors have an effect on men-
tioned choice, among them the very nature of the observed data. For instance, the data
might consist of both positive or negative integers. On the other hand, the data values
might be strictly nonnegative. This is usually the case when observed values are obtained
as a result of counting the elements of the population. The aforementioned data can of-
ten be found in many fields, including medicine, economics, finance, telecommunications,
criminology, sports. In order to model such data as well as possible, mathematicians
used at first autoregressive time series with continuous marginal distributions. This gave
acceptable results only when it comes to phenomena that generate extremely high re-
alization values, where round-off error is negligible. On the other hand, in situations
when observations registered over time are not that high (lower than 106), previously
mentioned models cannot be used successfully. Slightly better results were achieved by
involving Markov chains into the modeling procedure, as described in [9]. Unusually big
number of parameters was the key obstacle to this idea. Few years later, several Discrete
Autoregressive models of Moving Average (DARMA), based on well known ARMA mod-
els, were defined in [21], [22] and [23]. These models gave even better results. In mid
1980s, [34] and [2] introduced in different ways an Integer-valued Autoregressive model
of order 1 (INAR(1)), based on the binomial thinning operator. This newly introduced
model gave remarkable improvement in modeling the data that represents cardinality of
the set whose elements, with respect to previous observation, might survive or not.

The choice of the thinning operator, as well as the marginal distribution, determines the
very essence and the application potential of the INAR models. Over time, a large num-
ber of variations and generalizations of INAR models, in terms of their orders, thinning
operators and marginal distributions, have emerged. The next section follows the devel-
opment of this kind of models over decades, starting from the INAR(1) model introduced
by [34] and [2] all the way to the present day.

1.2 Evolution of INAR models

As mentioned earlier, the first INAR model was introduced in mid 1980s by [34] and
[2]. Following the approach given by Al-Osh and Alzaid, one concludes that the binomial
thinning operator lays in the center of this idea. Thus, an essence and properties of this
important operator should be brought closer to the reader.

1.2.1 Binomial thinning operator

Binomial thinning operator was introduced by [48] in the following way. Let X be an
integer-valued random variable. For all α ∈ [0, 1], the operator ”α ◦ ” is defined as

(1.1) α ◦X =
X∑
i=1

Wi,

where {Wi}, named as counting sequence, represents the sequence of independent and
identically distributed (i.i.d.) Bernoulli trails, independent of X, distributed as P (Wi =
1) = 1 − P (Wi = 0) = α. Thus, the distribution of α ◦ X|X = x is binomial, with

2



distribution parameters x and α. Bearing in mind that the distribution of the variable
α◦X|X determines the name of the thinning operator, one may say ”α◦” is the binomial
thinning operator. Further, some essential properties of the binomial thinning operator
will be exposed.

Properties of the binomial thinning operator

Let α, β ∈ [0, 1] and let ”α ◦ ”, ”β ◦ ” be operators defined as α ◦X =
X∑
i=1

W
(1)
i , β ◦X =

X∑
i=1

W
(2)
i , where

{
W

(1)
i

}
,
{
W

(2)
i

}
represent counting sequences of i.i.d. Bernoulli trails,

with distribution parameters α and β, respectively. In this case, it holds:

1. 0 ◦X a.s.
= 0;

2. 1 ◦X a.s.
= X;

3. α ◦ (β ◦X) = (αβ) ◦X, α, β ∈ (0, 1), where counting sequences involved in α ◦X
and β ◦X are mutually independent;

4. E(α ◦X) = αE(X);

5. E(α ◦X)2 = α2E (X2) + α(1− α)E(X);

6. α ◦ (X + Y )
d
= α ◦ X + α ◦ Y, whereby the notation ”

d
= ” is used when random

variables on both sides of the equality sign have the same distribution;

7. Cov(X,α ◦ Y ) = αCov(X, Y ), where thinning operator ”α ◦ ” is independent of
random variable X;

8. E(α ◦X|X) = αX, α ∈ (0, 1);

9. E ((α ◦X)2|X) = α2X2 + α(1− α)X, α ∈ (0, 1).

Proofs of these properties can be found in [46], [2], [13] and [14].

1.2.2 INAR models based on the binomial thinning operator

Al-Osh and Alzaid used predefined binomial thinning operator to introduce INAR(1)
models. These models have proven suitable for describing the data related to the counting
of population elements, where elements can survive or vanish from the population with
certain probability. This feature is a direct corollary of the fact that the binomial thinning
operator is based on the counting sequence of Bernoulli trails, i.e. random variables with
two possible realizations, 0 and 1.

Definition 1.2.1 ([2]). Time series {Xn}, given as

(1.2) Xn = α ◦Xn−1 + εn, n ∈ Z,

3



is INAR(1) time series, where α ∈ (0, 1), ”α ◦ ” is defined with (1.1), {εn} represents an
innovation sequence of i.i.d. nonnegative integer-valued random variables with mathemat-
ical expectation µε and finite variance σ2

ε , such that Xm and εn are independent random
variables for all m < n.

An application of such defined models is related to the following interpretation. A size of
the system Xn in moment n is consisted of two components: (i) the number of elements
of the system survived from the previous observation in moment n− 1, denoted as α ◦X,
whereby the surviving probability of each element is α; (ii) the number of new elements
entered the system during the interval (n− 1, n], denoted as εn. Hence, there is a widely
used name for {εn} - ”innovation sequence”.

Due to the importance and role that such defined models have played in the progress of
statistical modeling, the list of crucial properties proven by [2] and [46] will be presented.
First of all, bearing in mind an assumption that random variables involved in INAR(1)
time series are identically distributed, it holds that

E(Xn) =
µε

1− α
, α 6= 1,

V ar(Xn) =
αµε + σ2

ε

1− α2
, α 6= 1.

Further, the autocovariance function of {Xn} at lag k is

γk ≡ Cov(Xn, Xn+k) = αkγ0, k ≥ 0,

whereas the autocorrelation function at lag k is of the form

ρk =
γk
γ0

= αk, k ≥ 0.

The form of the INAR(1) autocorrelation function is identical to the one that correspond
to standard autoregressive AR(1) models, which is the proof of their interconnection.
Furthermore, the k-step ahead conditional expectation can be written as

E(Xn+k|Xn) = αkXn + µε

(
1− αk

1− α

)
, k ≥ 1.

For k-step ahead conditional variance, it holds

V ar(Xn+k|Xn) = αk
(
1− αk

)
Xn + µε

α
(
1− αk

) (
1− αk−1

)
1− α2

+ σ2
ε

1− α2k

1− α2
.

It becomes easy to prove that E(Xn+k|Xn) → E(Xn) and V ar(Xn+k|Xn) → V ar(Xn)
when k → ∞. To summarize, for large number of steps ahead, conditional properties
asymptotically approaches to unconditional properties.

Al-Osh and Alzaid gave in [2] one concretization of the INAR(1) models. In Definition
1.2.1, authors specified the distribution of the innovation process {εn} to be Poisson with
distribution parameter λ, λ > 0, denoted as Po(λ). In this case, it becomes easy to prove
that the marginal distribution of the time series {Xn} is Poisson as well, but with different
distribution parameter λ

1−α . The newly acquired time series was named the first-order
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Poisson Integer-valued Autoregressive (PoINAR(1)) time series. Using formulas given
above, properties of the PoINAR(1) time series were easily derived. Markov property,
strong stationarity and ergodicity were proven as well. In addition, the following statement
holds.

Theorem 1.2.1 ([3]). PoINAR(1) is the only strongly stationary INAR(1) time series
with finite variance and linear backward regression.

Few years latter, another important concretization of INAR(1) models is given in [1].
Starting from Definition 1.2.1, authors assumed geometric marginal distribution of the
sequence {Xn}, with distribution parameter q, q ∈ (0, 1), denoted as Geom(q). Then, it
was proven that

εn
d
=

{
0, w.p. α
Gn, w.p. 1− α,

where Gn is a random variable with Geom(q) distribution. This time series was called
the first-order Geometric Integer-valued Autoregressive (GINAR(1)) time series. The
notation w.p. represents a shorten form of the term ”with probability”. One might say
that the random variable εn is a mixture of the constant random variable 0 and the
random variable with corresponding geometric distribution. Thus, εn can be written as
εn = InGn, whereby In represents the Bernoulli trail with probability of success 1 − α.
Similar as before, Markov property, strong stationarity and ergodicity of the GINAR(1)
time series were proven. Other properties were derived as special cases of corresponding
INAR(1) properties.

Remark . As shown in [35], a useful alternative parametrization can be introduced here.
Namely, one can replace parameter q with P

1+P
, where P > 0. The additional value

obtained by the introduction of this new parametrization is reflected in more simple
recording of many statistical properties. For instance, the new parametrization might be
used in unknown parameter estimation, when its positive sides come to the fore.

In order to model more successfully the nonnegative integer-valued autoregressive time
series of more complex correlation structure, i.e. the time series with significant depen-
dence between more distant elements, INAR models of higher order were introduced.
Several approaches appeared, but the most significant between them was the one intro-
duced in [13]. Authors defined the new nonnegative integer-valued autoregressive time
series as a generalization of INAR(1), introduced by [2]. Their analysis did not refer to
any particular distribution, but to the generalized model of order p. Using the binomial
thinning operator defined with (1.1), authors introduced the INAR(p) time series as

(1.3) Xn =

p∑
l=1

αl ◦Xn−l + εn,

where αl ∈ (0, 1), l = 1, 2, . . . , p, {εn} are i.i.d. random variables with mathematical
expectation µε and variance σ2

ε , independent of all counting sequences {Wl,i}, such that
P (Wl,i = 1) = 1 − P (Wl,i = 0) = αl. All counting sequences are mutually independent
as well. Authors also proved that a stationary solution of the equation (1.3) exists only
if the equation

λp −
p∑
l=1

αlλ
p−l = 0

has its roots out of the unit circle. In addition, the weak stationarity is meant by the
term ”stationary”.

5



1.2.3 Other models based on the counting sequence of Bernoulli
trails

After previously presented time series, some significant INAR models that have came
up by generalization or modification of the thinning operator based on the counting se-
quences of Bernoulli trails will be mentioned in brief.

To make one such model, a very efficient operator which can be interpreted as a compo-
sition of two thinning operators was introduced in [1]. Namely, authors defined operator
”α ∗ ” as

α ∗X =

N(X)∑
i=1

Ui,

such that:

• {Ui} is a sequence of i.i.d. random variables with Geom
(

α
1+α

)
distribution, inde-

pendent of X and N(X),

• if x is a fixed realization of the random variable X, then N(x) represents the random
variable with binomial B(x, αp) distribution, 0 ≤ p ≤ 1.

After that, they introduced a Negative Binomial Iterative Integer-valued Autoregressive
(NBIINAR(1)) time series {Xn} of order 1, based on the new thinning operator, in a
following way:

Xn = α ∗Xn−1 + εn, n ∈ N,
where {εn} is a sequence of i.i.d. random variables with negative binomial NB

(
ν, α

1+α

)
distribution, ν > 0 and εn is independent of α∗Xn−1. In addition, if one supposes that X0

is NB
(
ν, α(1−p)

1+α(1−p)

)
distributed, then the newly defined time series has NB

(
ν, α(1−p)

1+α(1−p)

)
marginal distribution. This distribution is especially suitable for over-dispersed count
data modeling.

Shortly afterwards, the question of modeling time series with much more complex survival
mechanism (than the one described by standard binomial thinning operator) suddenly
arose. Namely, in many real-life problems the survival probability of population elements
varies. For that purpose, a time series with generalized Poisson marginal distributions
is defined in [4], whereby survival probability is a linear function of previously counted
elements. First, authors defined the quasi-binomial thinning operator ”ρθ,λ ◦ ” such that
ρθ,λ ◦ X has quasi-binomial QB

(
ρ, θ

λ
, x
)

distribution, given X = x, x ∈ N0, whereby
λ > 0, λ, ρ ∈ (0, 1) and xθ

λ
< min{ρ, 1 − ρ}. Using aforementioned thinning operator, a

Generalized Poisson Quasi-binomial Integer-valued Autoregressive (GPQINAR(1)) time
series of order 1 was introduced in the following way:

Xn = ρθ,λ ◦Xn−1 + εn, n ∈ N,

where λ > 0, λ, ρ ∈ (0, 1), {εn} is a sequence of i.i.d. random variables with generalized
Poisson GPo(1 − ρλ, θ) distribution and the counting sequence involved in ρθ,λ ◦Xm, as
well as the random variable εn, are independent of Xm for all m < n. As the name itself
suggests, marginal distribution is GPo(λ, θ), with probability mass function

P (X = x) =
λ(λ+ θx)x−1e−λ−θx

x!
, x = 0, 1, . . . ,
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where λ > 0, max
{
−1,− λ

m

}
< θ ≤ 1, m > 4.

The problem of modeling time series with inconstant survival probability led to the intro-
duction of the model characterized by the fact that its thinning parameter α ∈ [0, 1] has
been substituted by the random variable φ, whose realizations belong to [0, 1]. This kind
of concept was suggested at first in [50]. Shortly afterwards, a special case with Beta(α, β)
distributed random variable φ was discussed in [49], where the following definition can be
found.

Definition 1.2.2 ([49]). Let X be a nonnegative integer-valued random variable and let
φ be a random variable with realizations in [0, 1]. We say that random variable φ ◦X is
obtained by usage of random coefficient thinning operator , if ” ◦ ” represents a binomial
thinning operator independent of φ and X.

Following the results given in [24], author analyzed the case where φ has Beta(α, β)
distribution, and in that case random variable φ ◦ X, given X = x, has beta-binomial
BB(x;α, β) distribution. Then, the definition of the Negative Binomial Random Coeffi-
cient Integer-valued Autoregressive (NBRCINAR(1)) time series of order 1 appeared in
a form:

Xn = φn ◦Xn−1 + εn, n ∈ N,

where Xn is NB(n, p) distributed for all n ∈ N, {εn} represents an innovation sequence
of i.i.d. integer-valued random variables with NB(n(1 − ρ), p) distribution, {φn} is a
sequence of i.i.d. random variables with Beta(nρ, n(1 − ρ)) distribution, independent of
{εn}, as well as of {Xm}m<n. It is assumed that n and nρ are in N0, while p ∈ [0, 1].

1.2.4 Negative binomial thinning operator

Time series based on the binomial thinning operator are suitable for modeling the data
whose elements can contribute to the total sum only with 0 or 1. However, in real-life
problems, the observed element can generate several new elements. In that case, counting
series of Bernoulli trails are not suitable to describe such data. The need to construct
more useful counting series, as well as models based on it, suddenly occurred. A new
approach to this problem was suggested in [43]. Authors defined a negative binomial
thinning operator ”α ∗ ” as:

(1.4) α ∗X =
X∑
i=1

Ui,

where α ∈ (0, 1) and {Ui} represents the sequence of i.i.d. geometric distributed ran-
dom variables with distribution parameter α

1+α
. Hence, the random variable α ∗X, given

X = x, has negative binomial distribution with distribution parameters x and α
1+α

. Again,
bearing in mind that the distribution of the variable α ∗X|X determines the name of the
thinning operator, ”α ∗ ” is called a negative binomial thinning operator.

Properties of the negative binomial thinning operator

The most important properties of the negative binomial thinning operator defined above
will be listed. Namely, let α, β ∈ (0, 1) and let us define operators ”α ∗ ” and ”β ∗ ” as
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α∗X =
X∑
i=1

U
(1)
i , β∗X =

X∑
i=1

U
(2)
i , whereby

{
U

(1)
i

}
and

{
U

(2)
i

}
are assumed to be counting

sequences of i.i.d. random variables with Geom
(

α
1+α

)
and Geom

(
β

1+β

)
distributions,

respectively. Now, it holds:

1. 0 ∗X = 0;

2. 1 ∗X 6= X;

3. α ∗ (β ∗X) 6= (αβ) ∗X;

4. E(α ∗X) = αE(X);

5. E(α ∗X)2 = α2E (X2) + α(1 + α)E(X);

6. E((α ∗X)Y ) = αE(XY ), if the counting sequence involved in α ∗X is independent
of X and Y ;

7. E(α ∗X|X) = αX, if the counting sequence involved in α ∗X is independent of X;

8. E(α ∗ X|X)2 = α2X2 + α(1 + α)X, if the counting sequence involved in α ∗ X is
independent of X.

Complete list of properties of the negative binomial thinning operator, alongside with
corresponding proofs, can be found in [35].

1.2.5 INAR models based on the negative binomial thinning
operator

The negative binomial thinning operator was used by [43] to define a new time series with
geometric marginal distribution. Geometric distribution is suitable to cover the case of
over-dispersion, i.e. the fact that the variance of the count data is considerably larger
than the mean. This new time series, referred to as a New Geometric Integer-valued
Autoregressive (NGINAR(1)) time series of order 1, is defined as follows.

Definition 1.2.3 ([43]). We say that nonnegative integer-valued autoregressive time series
of order 1 with geometric marginal distribution (NGINAR(1)) is a sequence {Xn} which
satisfies the equation

Xn = a ∗Xn−1 + εn, n ∈ N,

where α ∈ (0, 1), operator ”α∗” is defined by (1.4), {Xn} is a sequence of random variables
with geometric distribution with the distribution parameter µ

1+µ
, µ > 0, {εn} represents

an innovation sequence of nonnegative integer-valued i.i.d. random variables, such that
εn is independent of Xn−k for all k > 0 and independent of counting sequence involved in
α ∗Xn−1.
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Unlike the random variable with Bernoulli distribution, whose realizations may take only
0 or 1, a random variable with geometric distribution is able to generate any nonnegative
integer. This fact brought new possibilities to the time series modeling. Namely, the time
series defined within Definition 1.2.3 could be used to model not just the phenomenon
when the set of elements registered in one moment is only contained of elements survived
from the previous observation, but the phenomenon whose elements are able to interact
with each other and thus create new elements. Again, the population size can be enlarged
through newly arrived elements, which is reflected in the model through innovation se-
quence.

Regarding the importance of the NGINAR(1) time series, a list of important properties of
the model proven in [43] will be presented. Due to the fact that the marginal distribution

of the model is Geom
(

µ
1+µ

)
, µ > 0, and the fact that α ∗Xn−1, given Xn−1 = xn−1, has

NB
(
xn−1,

α
1+α

)
distribution, it is possible po prove that

εn
d
=

{
Geom

(
α

1+α

)
, w.p. αµ

µ−α ,

Geom
(

µ
1+µ

)
, w.p. 1− αµ

µ−α ,

i.e. the distribution of the innovation random variable can be represented as a mixture
of two geometric distributions with distribution parameters α

1+α
and µ

1+µ
. Let us mention

here that random variable εn is well-defined for α ∈
(

0, µ
1+µ

]
. Next, regarding the as-

sumption that random variables involved in the NGINAR(1) time series are identically
distributed, we have

E(Xn) = µ,

V ar(Xn) = µ(1 + µ).

Further, the autocovariance function of {Xn} at lag k is

γk ≡ Cov(Xn, Xn+k) = αkγ0, k ≥ 0,

whereas the autocorrelation function at lag k is of the form

ρk =
γk
γ0

= αk, k ≥ 0.

Furthermore, the k-step ahead conditional expectation is

E(Xn+k|Xn) = αkXn +
1− αk

1− α
µε,

where µε = E(εn). Particularly, for k = 1, the one-step ahead conditional expectation is
of the form

E(Xn+1|Xn) = αXn + µε.

Finally, Markov property, property of strong stationarity and property of ergodicity are
proven as well.

Soon after that, a time series based on the negative binomial thinning operator, with
more general marginal distribution was discussed in [45]. Namely, authors assigned the
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negative binomial distribution as a marginal distribution of the model. In that way, they
defined a Negative Binomial Integer-valued Autoregressive (NBINAR(1)) time series of
order 1 as

Xn = α ∗Xn−1 + εn, n ∈ N,
where α ∈ (0, 1), operator ”α∗” is defined by (1.4), {Xn} is a sequence of random variables

with negative binomial NB
(
θ, µ

1+µ

)
marginal distribution, that is,

P (Xn = i) =
Γ(θ + i)

Γ(θ)i!

µi

(1 + µ)θ+i
, θ > 0, µ > 0, i = 0, 1, 2, . . . ,

and {εn} represents an innovation sequence of nonnegative integer-valued i.i.d. random
variables, such that εn is independent of Xn−k for all k > 0 and independent of counting
sequence involved in α ∗Xn−1.

Bearing in mind the marginal distribution of the model, as well as the distribution of α ∗
Xn−1, one can determine the distribution of the innovation random variable εn. According

to [45], εn
d
= Yn + Zn, where Yn and Zn are mutually independent random variables, the

distribution of Yn is NB
(
θ, α

1+α

)
and

Zn =
N∑
l=1

(
α(1 + µ)

µ

)Rl
◦ Vl,

where N has Po
(
−θ ln α(1+µ)

µ

)
distribution, the distribution of Rl is U(0, 1), the distribu-

tion of Vl is Geom
(

µ
1+µ

)
, ”

N∑
l=1

(
α(1+µ)

µ

)Rl
◦ ” is a notation for binomial thinning operator

and N,Rl and Vl are mutually independent. Again, the random variable εn is well-defined

for α ∈
(

0, µ
1+µ

]
.

Similar as before, Markov property, property of strong stationarity and property of er-
godicity were proven. In addition, for θ = 1, the NBINAR(1) time series is equivalent
to the NGINAR(1), introduced in [43].

1.2.6 Mixed INAR models

In practice, sometimes is needed to describe elements whose character varies. These
elements are passive in certain moment, which means that they do not interact with other
elements of the population. In other moments, observed elements may be very active,
which means they may interact with other population elements. In order to describe
phenomena made of such elements, a model based on mixture of binomial and negative
binomial thinning operator was constructed in [36]. Namely, for α, β ∈ (0, 1), let ”α ◦n ”
and ”β ∗n ” be notations for binomial and negative binomial thinning operator, where
index n indicates the moment of operator application. Operators ”α ◦n ” and ”β ∗n ”
are defined by (1.1) and (1.4), respectively. With these notations on the menu, authors
introduced a Mixed Geometric Integer-valued Autoregressive (MGINAR(1)) time series

of order 1 with Geom
(

µ
1+µ

)
marginal distribution as

Xn =

{
α ◦n Xn−1 + εn, w.p. p,
β ∗n Xn−1 + εn, w.p. 1− p,
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where p ∈ [0, 1] and the following conditions are satisfied:

(i) {εn} is a sequence of nonnegative integer-valued i.i.d. random variables;

(ii) the random variable εn is independent of Xm, α ◦m+1 Xm and β ∗m+1 Xm for all
m < n;

(iii) counting sequences involved in α ◦n+1 Xn and β ∗n+1 Xn are mutually independent;

(iv) counting sequences involved in α ◦n+1 Xn and β ∗n+1 Xn are independent of all
Xn−1,Xn−2, . . .;

(v) P (α ◦n+1 Xn = i, β ∗n+1 Xn = j|Xn = x,Hn−1) = P (α ◦n+1 Xn = i, β ∗n+1 Xn =
j|Xn = x), where Hn−1 represents the process history;

(vi) given Xn, random variables α ◦n+1 Xn and β ∗n+1 Xn are mutually independent.

If αµ < β(1 + µ) < µ, then the distribution of the random variable εn is a mixture of
three geometric distributions, i.e.

(1.5) εn
d
=


Geom

(
µ

1+µ

)
, w.p. A1 ≡ µ(α−1)(β−µ+µβ)

(µ−a)(µ−b) ,

Geom
(

a
1+a

)
, w.p. A2 ≡ (αµ−a)(β−a+µβ)

(µ−a)(b−a)
,

Geom
(

b
1+b

)
, w.p. A3 ≡ (αµ−b)(β−b+µβ)

(µ−b)(a−b) ,

where a and b are roots of the equation x2 − (β + αµ + βµp − αµp)x + (1 − p)αβµ = 0
and a < b.

The predefined first-order model considers the case when a significant change in the ac-
tivity of the observed population elements really exists, but the direction of change isn’t
specified. However, additional information could be available. It might happen that
elements start being passive at the beginning of their existence, but become active in
the next moment. In order to describe this kind of dependance between elements, the
second-order Mixed Geometric Integer-valued Autoregressive (MGINAR(2)) time series
was defined in [36] in the following way:

Xn =

{
α ◦n Xn−1 + εn, w.p. p,
β ∗n Xn−2 + εn, w.p. 1− p,

where instead of conditions (ii), (v) and (vi), mentioned within the previous model, it
holds:

(iia) the random variable εn is independent of Xm, α ◦m+1 Xm and β ∗m+2 Xm for all
m < n;

(va) P (α ◦n+1 Xn = i, β ∗n+2 Xn = j|Xn = x,Hn−1) = P (α ◦n+1 Xn = i, β ∗n+2 Xn =
j|Xn = x), where Hn−1 represents history of the process;

(via) given Xn, random variables α ◦n+1 Xn and β ∗n+2 Xn are mutually independent.

For αµ < β(1 + µ) < µ, {Xn} is well-defined time series and the distribution of its inno-
vation process is given by (1.5).
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At the same time, a generalization of the MGINAR(2) time series was developed in
[44], in order to describe a more complex situation when elements start being passive at
the beginning of their existence, but become active in the several forthcoming moments.
Thus, authors introduced a p-order Mixed Integer-valued Autoregressive (MINAR(p))
time series in the following way:

Xn =



α ◦n Xn−1 + εn, w.p. φ1,
α ∗n Xn−2 + εn, w.p. φ2,
α ∗n Xn−3 + εn, w.p. φ3,
...
α ∗n Xn−p + εn, w.p. φp,

where
p∑
l=1

φl = 1, φl ≥ 0, α ∈ (0, 1), and the following conditions are satisfied:

a) {εn} is a sequence of i.i.d. random variables, such that E(εn) = µε and V ar(εn) =
σ2
ε <∞;

b) the random variable εn is independent of Xm, α ◦m+1 Xm and α ∗m+l Xm, for all
m < n and all l = 2, 3, . . . , p;

c) counting sequences involved in thinning operators applied in the moment n are
mutually independent;

d) counting sequences involved in thinning operators applied in the moment n are
independent of Xn−1, Xn−2, . . ..

In order to describe the model completely, the distribution of the innovation process was
also provided in [44]. Namely, if 0 < α < µ

1+µ
, the distribution of εn is given as

εn
d
=


Geom

(
µ

1+µ

)
, w.p. A1 ≡ µ(α−1)(α−µ+µα)

(µ−a)(µ−b) ,

Geom
(

a
1+a

)
, w.p. A2 ≡ (αµ−a)(α−a+µα)

(µ−a)(b−a)
,

Geom
(

b
1+b

)
, w.p. A3 ≡ (αµ−b)(α−b+µα)

(µ−b)(a−b) ,

where a and b are roots of the equation x2 − α(1 + µ)x+ α2µ(1− p) = 0 and a < b.

All models listed in this subsection are based on the mixture of binomial and negative
binomial thinning operator. In addition, an existence of such defined models is proven.
The property of strong stationarity, as well as the property of ergodicity are confirmed
for all mixed models listed here.

1.2.7 Models with both positive and negative values

All models mentioned above are limited in the sense that they generate only nonnegative
integer values. On the other hand, realizations of the real-life phenomena can frequently
take negative values. These phenomena are not suitable to be described with any of pre-
defined models. This is why the researchers tried to create new models which overcome
newly arisen problem.
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A step forward in this direction was made by [15]. Namely, author defined a time series
with symmetric Skellam marginal distribution using results presented in [16]. First of all,
author introduced a new thinning operator in the following way:

α ? Zn|Zn
d
= (α ◦Xn − α ◦ Yn)|(Xn − Yn),

where α ∈ (0, 1), ”α◦” is defined by (1.1) and Xn, Yn are random variables with the same
Po
(

µ
1−α

)
distributions. Counting sequences involved in α ◦Xn and α ◦ Yn are mutually

independent and independent of Xn, Yn and Zn. After that, author defined the first-order
True Integer-valued Autoregressive (TINAR(1)) time series as

Zn = α ? Zn−1 + εn, n ∈ N,

with symmetric Skellam
(

µ
1−α

)
marginal distribution, where {εn} represents a sequence

of i.i.d. integer-valued random variables with symmetric Skellam(µ) distribution, such
that εn and Zn−k are independent for all k > 0. Since the TINAR(1) represents the topic
of Chapter 2, properties of this model will be omitted here.

Another interesting model was created by [8]. Authors used the signed thinning operator,
already defined in [31] as

F ◦X =

 sgn(X)
|X|∑
i=1

Yi, X 6= 0

0, X = 0,

where elements of the counting sequence, i.e. Yi, i > 0, are independent of X and
are i.i.d. random variables with the distribution characterized by the probability mass
function F . With such defined operator on the table, the first-order Signed Integer-valued
Autoregressive (SINAR(1)) time series was introduced by [8] in the following way:

Xn = F ◦Xn−1 + εn, n ∈ N,

where {εn} represents an innovation sequence of i.i.d. random variables with mathe-
matical expectation µε and the finite variance σ2

ε , independent of the counting sequence
involved in ”F ◦ ”, such that εn and Xn−k are independent for all k > 0. Given the
distribution of the innovation sequence, authors find the way to determine the marginal
distribution of such defined time series {Xn}.

In order to successfully model the real-life data with both positive and negative values, one
more interesting idea was introduced in [5]. First, authors defined so called ”expanded”
thinning operator as

Sα,θ(Z) = sgn(Z)

|Z|∑
i=1

Yi +

W (Z)∑
i=1

Bi,

where α ∈ (0, 1), θ ≥ 0, {Yi} is a sequence of i.i.d. Bernoulli trails with probability of
success α, independent of the sequence {Bi} and random variables Z and W (Z). Also,
{Bi} is a sequence of i.i.d. random variables distributed as

Bi :

(
−1 0 1

α(1− α) 1− 2α(1− α) α(1− α)

)
,
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independent of Z and W (Z). Finally, the random variable W (Z) satisfies condition that
W (Z)|Z = z has Bessel distribution with distribution parameters |z| and θ. With such
defined thinning operator, authors came into position to introduce the first-order Poisson
Difference Integer-Valued Autoregressive (PDINAR(1)) time series in the following way:

Zn = δSα,θ(Zn−1) + εn, n ∈ N,

where parameter δ takes values from the set {−1, 1}, {εn} is a sequence of i.i.d. random
variables with skewed Skellam(θ1, θ2) distribution, such that εn is independent of Zn−k
for all k > 0.

A significant step forward happened in 2016. when a time series with discrete Laplace
marginal distribution was defined by [37]. Namely, authors constructed the time series
basing it on the new thinning operator, defined as

(1.6) α� Zn|Zn
d
= (α ∗Xn − α ∗ Yn)|(Xn − Yn),

where α ∈ (0, 1), ”α ∗ ” is defined by (1.4) and Xn and Yn are random variables with

the same Geom
(

µ
1+µ

)
distribution. Using this newly defined thinning operator, authors

constructed a new time series, referred to as the first-order Discrete Laplace Integer-valued
Autoregressive (DLINAR(1)) time series, in the following way:

(1.7) Zn = α� Zn−1 + en, n ∈ N,

where {Zn} represents a time series with discrete Laplace distribution, while {en} is
an innovation sequence of i.i.d. random variables, such that en and Zn−k are mutually
independent for all k > 0. Further, authors proved that {Zn} is well-defined time series
for 0 < α ≤ µ

1+µ
. Furthermore, it holds that

en
d
=



DL
(

µ
1+µ

)
, w.p.

(
1− αµ

µ−α

)2

,

SDL
(

µ
1+µ

, α
1+α

)
, w.p. αµ

µ−α

(
1− αµ

µ−α

)
,

SDL
(

α
1+α

, µ
1+µ

)
, w.p. αµ

µ−α

(
1− αµ

µ−α

)
,

DL
(

α
1+α

)
, w.p.

(
αµ
µ−α

)2

,

where ”SDL” represents the notation of the skewed discrete Laplace distribution. In
addition, Markov property, property of strong stationarity, property of ergodicity and
positive correlation between elements of the sequence {Zn} are proven. Besides this, the
definition of the time series with negatively correlated elements is given as well.

Several generalizations of this concept appeared. For instance, authors discussed in [6]
the case when marginal distribution of the sequence {Zn} is skewed discrete Laplace, that
is, the case when marginal distributions of NGINAR(1) time series involved in the def-
inition of {Zn} are geometric with different distribution parameters. However, thinning
parameters that appear beside Xn and Yn remained the same again.

Even more generalized case was introduced by [11]. Namely, author discussed the case
when marginal distribution of the time series {Zn} is again skewed discrete Laplace,

14



but thinning parameters appearing beside Xn and Yn are different. This new model
is referred to as the fist-order Skewed Discrete Laplace Integer-valued Autoregressive
(SDLINAR(1)) time series. The most of the properties confirmed for DLINAR(1) have
also been proven in the case of SDLINAR(1).

More complex real-life problems required appropriate mathematical model with more
complex correlation structure, that is, time series with a significant dependence between
more distant elements. As a response to this kind of problems, researches introduced
INAR(p) models with values in Z. First of all, an integer-valued autoregressive time
series of higher order was defined in [27] using the newly introduced signed binomial
thinning operator. This operator is defined in the following way:

α�X = sgn(α)sgn(X)

|X|∑
i=1

Wi,

where elements of the counting sequence are i.i.d. Bernoulli trails with distribution pa-
rameter |α|, α ∈ [−1, 1]. Also, elements of the counting sequence are independent of
X. With such defined thinning operator, authors introduced in [27] a non-stationary
integer-valued autoregressive model of order p as

Xn =

p∑
l=1

αl �Xn−l + εn, n ≥ p,

where αl ∈ (−1, 1), l = 1, 2, . . . , p and {εn} is an innovation sequence of i.i.d. random
variables with finite mean and finite variance, such that εn is not correlated with Xn−k,
k ≥ 1. Elements of the counting sequences involved in αl � Xn−l, l = 1, 2, . . . , p, are
mutually independent and independent of Xn.

Another interesting approach was given in [25], where authors managed to define an
integer-valued autoregressive time series using the signed binomial thinning operator,
given in [31]. Time series, referred to as a p-order Signed Integer-valued Autoregressive
(SINAR(p)) time series, was defined as

Xn =

p∑
l=1

Fl ◦Xn−l + ξn, n ≥ p,

where ”Fl ◦ ” represents the signed binomial thinning operator given in [31] and {ξn} is
an innovation sequence of i.i.d. random variables with finite expectation and finite vari-
ance. Elements of the innovation sequence {ξn} are independent of elements of counting
sequences. Also, counting sequences involved in Fl ◦ Xn−l, l = 1, 2, . . . , p, are mutually
independent.

1.2.8 Random environment process

The most of aforementioned models are stationary, which means that they are suitable to
describe the phenomena with approximately constant characteristics over time. However,
the real-life data often deviates from this assumption and shows some non-stationary
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properties. In this case, aforementioned models did not give satisfactory results. Obvi-
ously, the non-stationary INAR models had to be introduced somehow. It was desirable
to simplify these models in the way to become as similar as possible to the stationary
INAR models. One of the ways to do so, given in [38], is to define a concept of time
series in random environment. The essence of the concept is to introduce an auxiliary
process, i.e. a random environment process, in order to allow the primary time series to
have a different behavior in each environment.

Each phenomenon, observed by researchers, takes place under conditions determined by
the environment, which directly affects the registered values of the observed phenomenon.
It sounds reasonable to suppose that any change in those conditions may lead to a change
in registered values. Each state of environment conditions allows primary time series to
have one particular distribution, that is, to accumulate realizations in the range around
one specific value. The number of states, denoted as r, may be enlarged or reduced,
depending on the analyzed problem. However, it is recommended not to enlarge the
number of states r too much, despite the fact that a higher number of states increases
the flexibility of the model. Yet, a higher number of states entail a higher number of
model parameters, which complicates working with such model. A formal definition of
the random environment process follows.

Definition 1.2.4 ([38], Definition 1). A sequence of random variables {Zn}, n ∈ N0, is
called the r states random environment process, for r ∈ N, if it is a Markov chain with
values in Er = {1, 2, . . . , r}. More generally, {Zn}, n ∈ N0, is the random environment
process, if it is the r states random environment process, for some r ∈ N.

One can notice here that the set Er is consisted of the first r natural numbers. These
numbers do not represent any observed values, i.e. they do not represent any measurable
characteristic of the environment. There is no experiment nor observation which measure
the environment itself. The goal of the research is not the random environment model-
ing, but the influence of the random environment on the primary process being modeled.
Bearing that in mind, it becomes clear that the properties of the environment are not of
importance and that its only role is to provide the introduction of non-stationarity into a
particular INAR model. But, one may wonder how to determine the values of the random
environment process, if those are not obtained by experiment. Well, the procedure is quite
easy. By observing given realizations, it is possible to determine the number of different
sets where realizations are grouped in, so in accordance with that, one may assume that
there is an equal number of different environment states. If r states are registered, then
one may claim that the random environment process is taking values in Er = {1, 2, . . . , r}.
The notation Zn = s means that the environment is in the s-th state, and in accordance
with that, the s-th distribution from the family of distributions {F (x, θq), q ∈ Er} will
be associated to the INAR model in moment n. To sum up, the values found in the set
Er are not of importance, but the fact that there are r different values, and that each
value is associated with exactly one state and each state with exactly one distribution of
the observed process.

One important property of the random environment process needs to be highlighted.
As given in [38], let zn = zn+1 = . . . = zn+k = s, k ∈ N, s ∈ Er, where zi, i =
n, n + 1, . . . , n+ k represent realizations of the random environment process. In addi-
tion, let zn−1 6= zn and zn+k 6= zn+k+1. Elements of the subsequence Xn, Xn+1, . . . , Xn+k
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all correspond to the state s, while adjacent elements correspond to some other states.
Hence, this subsequence might be observed as a stationary piece of the given time series,
regarding the absence of the state change. Thus, random environment INAR models
might be observed as a piecewise stationary. Consequently, some properties of the sta-
tionary INAR time series may be applied piecewise. Given conclusion brings a great
simplification to the analysis of random environment INAR models. It should be men-
tioned that the lengths of stationary pieces are determined by the transition probability
matrix of the r states random environment process. To clarify, the transition probability
matrix reveals the probabilities of transitioning from one state to another in two consec-
utive observations. More precisely, for all q, s ∈ Er, transition probability pqs from state
q to state s is defined as pqs = P (Zn+1 = s|Zn = q). Now, higher values on the main
diagonal of the transition probability matrix mean that the environment state will more
likely remain the same for a while, which implies longer pieces correspond to the same
state.

In order to apply INAR models based on the random environment process, the sequence
{zn} of realizations of the random environment process needs to be determined first. For
that purpose, clustering is used. After determining the number of clusters r, observed
realizations are supposed to be grouped into r different clusters and each cluster is ob-
served as one specific state. If the realization xn is in the s-th cluster, one may consider
that zn = s. In that way, each realization is associated with one particular state. This
completely determines the sequence {zn}. Let’s say that the sample of size N is regis-
tered and some predictions need to be made. Before predicting the value of XN+1, one
has to find the way to predict ZN+1, given realizations z1, z2, . . . zN . In order to do so,
an estimate of the transition probability matrix is going to be used. Namely, transition
probabilities can be estimated in a usual way, as a quotient of the number of favorable
outcomes and the total number of outcomes. For instance, as an estimate of the transition
probability from state q to state s one can take a quotient of the number of all transitions
from q to s registered in the sample and the total number of transitions from state q.
Using estimated transition probability matrix thus obtained, for given ZN = zN , one can
generate the prediction value of ZN+1, and then the value of ZN+2 based on ZN+1 = zN+1

etc. In this way, the sequence {zn} of an arbitrary length can be created.

Described interconnection between the INAR time series and the random environment
process might be generalized. So far, environment states had influence only on the distri-
bution of the observed model. Nevertheless, one can expand the field of influence of the
environment states and suppose their influence on the order of the model, or even on the
value of the corresponding thinning parameter. Generalization might be also carried out
in terms of the time series dimension. For instance, a bivariate random environment pro-
cess would be useful to involve the non-stationarity into the bivariate INAR time series,
where two different environments exist, such that each of them affects one component
of the time series. The following definition introduces the bivariate random environment
process.

Definition 1.2.5 ([30]). A sequence of bivariate random variables {(Wn, Qn)}, n ∈ N0,
indexed by the set of nonnegative integer numbers N0 is called a bivariate (r1, r2) states
random environment process, for r1, r2 from the set of positive integer numbers N, if {Wn}
and {Qn}, n ∈ N0 are the r1 and the r2 states random environment processes, respectively.
More generally, {(Wn, Qn)}, n ∈ N0, is bivariate random environment process if it is
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bivariate (r1, r2) states random environment process, for some r1, r2 ∈ N.

1.2.9 INAR models based on the random environment process

An idea of the random environment process, presented in the preceding text, served to
develop INAR models in a completely new direction. The first INAR model based on
the random environment process was introduced in [38]. The main assumption made by
authors is that the environment conditions have an influence on the marginal distribution
of the INAR time series. More precisely, the registered value zn of the random envi-
ronment process in moment n determines the marginal distribution parameter µzn in the
same moment from the supposed set of marginal parameter valuesM = {µ1, µ2, . . . , µr},
r ∈ N. Under the additional assumption that the marginal distribution is geometric, the
r states random environment INAR time series of order 1 (RrNGINAR(1)) was defined
in [38] as

Xn(zn) = α ∗Xn−1(zn−1) + εn(zn−1, zn), n ∈ N,

where α ∈ (0, 1), ”α ∗ ” is defined by (1.4), {zn} is a realization of the process {Zn} and
{εn(q, s)}, n ∈ N, q, s ∈ Er, are sequences of i.i.d. random variables, such that:

(1) {Zn}, {εn(1, 1)},{εn(1, 2)},. . . ,{εn(r, r)} are mutually independent sequences of ran-
dom variables;

(2) Xn(u) is independent of Zm and εm(q, s) for all n < m and all q, s, u ∈ Er.

The notation Xn(zn) is here to clarifies the fact that the distribution of Xn depends on
zn, that is,

P (Xn(zn) = x) =
µxzn

(1 + µzn)x+1
, x ∈ N0,

where µzn ∈M. Several properties have been proven, among them the distribution of the

innovation process. If 0 ≤ α ≤ min
{

µj
1+µi

, i, j ∈ Er
}

, then for fixed zn−1 = q and zn = s,

q, s ∈ Er,

(1.8) εn(q, s)
d
=

{
Geom

(
µs

1+µs

)
, w.p. 1− αµq

µs−α ,

Geom
(

α
1+α

)
, w.p. αµq

µs−α .

This model served as a prototype of introducing the non-stationarity into INAR mod-
els. Several generalizations appeared in forthcoming years, but all of them were based
on the same foundations. One of those generalizations was given in [39], where authors
modified assumptions a bit. Namely, it was assumed that environment conditions, beside
the marginal distribution parameter, have an effect on the order of the time series, i.e.
the realization zn of the random environment process in moment n also determines the
order of the model in the same moment. More precisely, authors defined two similar
models, depending on the order’s growth within a subsequence of consecutive elements
corresponding to the same state. To explain more appropriately, let us introduce here the
set P = {p1, p2, . . . , pr} of maximal orders for all states.

In the first case, authors assumed that the element Xn(zn) in moment n is allowed
to take the largest possible order pn, not greater then maximal order pzn , provided
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Xn−1(zn−1),Xn−2(zn−2), . . . , Xn−pn(zn−pn) belong to the same state. To realize that, au-
thors introduced in [39] an INAR time series with r states random environment guided
geometric marginal distributions (RrNGINARmax(p)) in the following way:

Xn(zn) =


α ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ

(pn)
1 ,

α ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(pn)
2 ,

...

α ∗Xn−pn(zn−pn) + εn(zn−pn , zn), w.p. φ
(pn)
pn ,

where pn = min{pzn , p∗n}, p∗n = max{k ∈ {1, 2, . . . , n} : zn−1 = zn−2 = . . . = zn−k}, and
the following conditions are satisfied:

(1) φ
(pn)
l ≥ 0, l ∈ {1, 2, . . . , pn},

pn∑
l=1

φ
(pn)
l = 1;

(2) α ∈ (0, 1) and ”α ∗ ” is defined by (1.4);

(3) for fixed q, s ∈ Er, {εn(q, s)} is a sequence of i.i.d. random variables;

(4) {Zn}, {εn(1, 1)},{εn(1, 2)},. . . ,{εn(r, r)} are mutually independent sequences of ran-
dom variables;

(5) Xn(u) is independent of Zm and εm(q, s) for all n < m and all q, s, u ∈ Er.

Behavior of the model needs to be highlighted additionally. When the state change oc-
curs, the order of the defined time series takes value 1. Afterwards, the order value starts
increasing by 1 in each subsequent moment, until it reaches its maximum value predicted
for that state pzn . Then, it remains at maximum until the next state change.

In the second case, assumptions were modified. Namely, after the state change occurs, the
order becomes 1 again, but it doesn’t gradually increase over time. After taking value 1,
the order of the model remains the same until the conditions to take maximum value pzn
are fulfilled. Precisely, the only two possible order values corresponding to the particular
state s are 1 and ps. Bearing in mind everything mentioned here, authors introduced an
INAR time series with r states random environment guided geometric marginal distribu-
tions (RrNGINAR1(p)) in the same way as it was done with RrNGINARmax(p), except
the definition of pn, which was in the case of RrNGINAR1(p) time series defined as

pn =

{
pzn , p∗n ≥ pzn ,
1, p∗n < pzn .

Again, p∗n is defined as p∗n = max{k ∈ {1, 2, . . . , n} : zn−1 = zn−2 = . . . = zn−k},
and conditions (1)-(5) still hold. For both predefined models, the distribution of the
innovation process is equivalent to the one of the RrNGINAR(1) model. Provided

0 ≤ α ≤ min
{

µj
1+µi

, i, j ∈ Er
}

, the distribution of the innovation process is given by

(1.8) for fixed zn−1 = q and zn = s, q, s ∈ Er.

Even more generalized models were defined by [29]. Beside the marginal distribution
parameter and the order of the model, authors supposed that environment conditions
have an effect on the thinning operator value as well. Precisely, the registered value zn of
the random environment process in moment n determines the thinning parameter value
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αzn in the same moment from the supposed set of parameter values A = {α1, α2, . . . , αr}.
Depending on the behavior of the model order after the state change, authors defined two
models with r states random environment guided geometric marginal distributions. First
of them, referred to as RrNGINARmax(M,A,P), was defined as

(1.9) Xn(zn) =


αzn ∗Xn−1(zn−1) + εn(zn−1, zn), w.p. φ

(zn)
1,Pn

,

αzn ∗Xn−2(zn−2) + εn(zn−2, zn), w.p. φ
(zn)
2,Pn

,
...

αzn ∗Xn−Pn(zn−Pn) + εn(zn−Pn , zn), w.p. φ
(zn)
Pn,Pn

,

where Pn = min{pzn , p∗n}, p∗n = max{k ∈ {1, 2, . . . , n} : zn−1 = zn−2 = . . . = zn−k},
and conditions (1)-(5), set within the previous model, are satisfied. The second model,
referred to as RrNGINAR1(M,A,P), was defined in an almost identical manner. An
exception is the definition of Pn, which was given as

Pn =

{
pzn , p∗n ≥ pzn ,
1, p∗n < pzn .

Finally, let one supposes that zn−1 = q and zn = s for some q, s ∈ Er. If 0 ≤ αs ≤
µs

1+maxq∈Er µq
, then the distribution of the random variable εn(q, s) can be written as a

mixture of two geometrically distributed random variables with means µs and αs, as
follows:

εn(q, s)
d
=

 Geom
(

µs
1+µs

)
, w.p. 1− αsµq

µs−αs ,

Geom
(

αs
1+αs

)
, w.p. αsµq

µs−αs .

This conclusion holds for both, RrNGINARmax(M,A,P) and RrNGINAR1(M,A,P)
models.

Regarding the generalization in terms of the model dimension, one idea stands out in
importance. The idea was carried out in [30], where the first-order bivariate INAR(1)
time series with geometric marginal distributions, based on bivariate (r1, r2) states ran-
dom environment process, was defined. Components of the bivariate INAR(1) time
series are related through the bivariate random environment process in the way that they
depend on both of the random environment components, so it becomes impossible to sep-
arate them completely into two RrNGINAR(1) time series and analyze them separately.
This is why the model is referred to as a Crossed Bivariate INAR(1) time series with
(r1, r2) states random environment guided geometric marginal distributions, or abbrevi-
ated CBRNGINAR(1).

1.3 Important distributions

In this section, two important discrete distributions are discussed and their crucial prop-
erties are presented. These distributions, alongside with their properties, will be widely
used in the following chapters.

20



1.3.1 Skellam distribution

Even though Skellam distribution got its name by John Skellam1, it was introduced first
in its symmetric form by [20]. Current name was given a decade later. One says that
the random variable Z has a symmetric Skellam distribution with distribution parameter
µ, µ ≥ 0, if its probability mass function is of the form

(1.10) p(k;µ) = P (Z = k) = e−2µI|k|(2µ), k ∈ Z,

where I|k| is the modified Bessel function of the first kind, given as

(1.11) I|k|(x) =
∞∑
l=0

(x
2
)2l+|k|

l!Γ(l + |k|+ 1)
.

The fact that the random variable Z has Skellam distribution with distribution parameter
µ will be denoted as Z : Skellam(µ). One interesting fact in regard to the symmetric
Skellam distribution is given in [20], and represents a connection between symmetric Skel-
lam distribution and Poisson distribution. Namely, it is shown that the random variable
Z with symmetric Skellam distribution can be represented in distribution as a difference
between two i.i.d. random variables with identically parameterized Poisson distributions.

A generalization of the symmetric Skellam distribution was introduced in [47], where a
skewed Skellam distribution with distribution parameters µ and ν, µ, ν ≥ 0, was defined
and denoted as Skellam(µ, ν). The corresponding probability mass function is of the
form:

(1.12) p(k;µ, ν) = P (Z = k) = e−(µ+ν)
(µ
ν

) k
2
I|k|(2

√
µν), k ∈ Z,

where Z represents the skewed Skellam distributed random variable with distribution pa-
rameters µ and ν, and I|k| is given by (1.11). Analogously to the symmetric case, the
random variable Z can be represented in distribution as a difference between two inde-
pendent random variables X and Y with differently parameterized Poisson distributions
and distribution parameters µ and ν respectively, i.e.

Z
d
= X − Y.

Bearing in mind the shape of the probability mass function of the Skellam(µ, ν) dis-
tributed random variable given by (1.12), a formula for moment-generating function
(MGF) of the mentioned random variable might be easily obtained. The MGF of the
random variable Z with Skellam(µ, ν) distribution is of the form:

(1.13) MZ(s) = e−(µ+ν)+µes+νe−s .

Using properties of the MGF , it becomes easy to determine raw moments of the random
variable Z:

m1 = E(Z) = µ− ν,
m2 = E

(
Z2
)

= µ+ ν + (µ− ν)2,

m3 = E
(
Z3
)

= (µ− ν)
(
1 + 3(µ+ ν) + (µ− ν)2

)
.

Consequently, V ar(Z) = m2 −m2
1 = µ+ ν. Corresponding results for symmetric Skellam

distribution are easy to obtain by equalizing parameters µ and ν.

1John Gordon Skellam (1914− 1979)
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1.3.2 Discrete Laplace distribution

In this subsection, a discrete Laplace distribution will be presented and some of its prop-
erties will be revealed. Discrete Laplace distribution was introduced by [19] as a discrete
equivalent of the Laplace distribution of the continuous type. The random variable Z
is said to be discrete Laplace distributed with distribution parameter p ∈ (0, 1), if its
probability mass function is of the form

P (Z = z) =
1− p
1 + p

p|z|, z ∈ Z.

The fact that the random variable Z has discrete Laplace distribution with distribution
parameter p will be denoted as Z : DL(p). Since a generalization of the discrete Laplace
distribution occurred later, this form of distribution sometimes have a prefix ”symmetric”.
In [19], a connection between discrete Laplace distribution and geometric distribution was
also revealed. Similar as it was the case with symmetric Skellam distribution, authors
showed that the random variable Z with discrete Laplace distribution can be represented
in distribution as a difference between two i.i.d. geometrically distributed random vari-
ables with the same distribution parameter p. Regarding this fact, a tiny change in
notation of the distribution parameter will be implemented. Namely, the discrete Laplace

distribution will be denoted as DL
(

µ
1+µ

)
, µ > 0, where µ represents mathematical ex-

pectation of the aforementioned random variables with geometric distributions. In that
case, one would say the random variable Z is discrete Laplace distributed if its probability
mass function is defined as

(1.14) P (Z = z) =
1

1 + 2µ

(
µ

1 + µ

)|z|
, z ∈ Z, µ > 0.

A skewed discrete Laplace distribution with parameters µ > 0 and ν > 0 was introduced
in [28] as a generalization of the (symmetric) discrete Laplace distribution. The new

distribution was denoted as SDL
(

µ
1+µ

, ν
1+ν

)
. The probability mass function of such

introduced distribution is given as

(1.15) P (Z = z) =

{
1

1+µ+ν

(
µ

1+µ

)z
, z ≥ 0,

1
1+µ+ν

(
ν

1+ν

)−z
, z < 0.

Similar as in the symmetric case, a random variable with SDL
(

µ
1+µ

, ν
1+ν

)
distribution can

be represented in distribution as a difference between two independent random variables

with Geom
(

µ
1+µ

)
and Geom

(
ν

1+ν

)
distributions, respectively. Bearing in mind the prob-

ability mass function of the random variable with skewed discrete Laplace distribution, it
becomes easy to obtain its characteristic function, which is of the form

(1.16) ϕZ(t) =
1

(1 + µ− µeit)(1 + ν − νe−it)
.

Using the well known properties of the characteristic function, some numerical charac-

teristics of the random variable Z with SDL
(

µ
1+µ

, ν
1+ν

)
distribution are easily obtained,

that is,
E(Z) = µ− ν, V ar(Z) = µ(1 + µ) + ν(1 + ν).
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Also it would be convenient to present the expression for E(|Z|), which will be useful for
some later calculations:

(1.17) E(|Z|) =
µ(1 + µ) + ν(1 + ν)

1 + µ+ ν
.

And again, as it was the case with Skellam distribution, corresponding results for (sym-
metric) discrete Laplace distribution are easy to obtain by equalizing parameters µ and
ν.

1.4 Important theorems

Several important theorems, crucial for proving numerous properties of the time series
with discrete Laplace marginal distributions, will be presented in this section. These
theorems represent results of various authors, but the most of them have been already
mentioned in the text given above.

Theorem 1.4.1 ([37], Corollary 2.1). For thinning operator ”α � ”, defined by (1.6), it
holds:

(a) α� Zn−1
d
= α ∗Xn−1 − α ∗ Yn−1;

(b) E(α� Zn−1) = 0;

(c) V ar(α� Zn−1) = 2αµ(1 + 2α + αµ);

(d) 0� Zn−1
d
= 0;

(e) 1� Zn−1

d

6= Zn−1.

Theorem 1.4.2 ([37], Theorem 2.3). The conditional expectation and conditional vari-
ance of the random variable α� Zn−1 for given Zn−1 are respectively given as

E(α� Zn−1|Zn−1) = αZn−1,

V ar(α� Zn−1|Zn−1) = α(1 + α)|Zn−1|+
2α(1 + α)µ2

1 + 2µ
.

Theorem 1.4.3 ([37], Theorem 2.4). Let Z,X and Y be random variables with DL
(

µ
1+µ

)
,

Geom
(

µ
1+µ

)
and Geom

(
µ

1+µ

)
distributions, respectively. Let {Dl, l ≥ 1} be a sequence

of independent random variables with DL
(

α
1+α

)
distributions and suppose that random

variables Z,X, Y,Dl, l ≥ 1, and the random variables involved in α∗ |Z| are independent.
Then,

(1.18) α� Z d
= sgn(Z)(α ∗ |Z|) +

min{X,Y }∑
l=1

Dl,

where
min{X,Y }∑

l=1

Dl = 0 when min{X, Y } = 0 and sgn is the sign function.
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Theorem 1.4.4 ([37], Theorem 3.3). DLINAR(1) time series {Zn} given by (1.7) is
positively correlated time series with autocorrelation function at lag k given as ρk =
Corr(Zn, Zn−k) = αk, k ≥ 0.

Theorem 1.4.5 ([33], Continuous Mapping Theorem). Let {Xn} be a sequence of k-
dimensional random variables and let g : Rk → Rl be a continuous mapping. Then,

Xn → X⇒ g(Xn)→ g(X), n→ +∞,

where the statement holds for convergence in distribution, convergence in probability, and
almost sure convergence.

Theorem 1.4.6 ([13], Theorem 4.1). Let {Xn} be the INAR(p) time series, p ≥ 1 and
let α = (α1, α2, . . . , αp) be the vector of thinning parameters of the model, such that

Γα = ρ,

where Γ = [ρ|i−j|]p×p, ρ = (ρ1, ρ2, . . . , ρp)
′

and ρk = Corr(Xn, Xn−k), k = 1, 2, . . . , p.
Then,

α̂YW = Γ̂−1ρ̂

is a strongly consistent estimator of the thinning parameter vector α.
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Chapter 2

Extracting and predicting latent
components of the skewed TINAR(1)
time series

As mentioned in Chapter 1, TINAR(1) time series described by [15] was regarded as a
great step forward within the theory of integer-valued autoregressive time series. Follow-
ing the results given in [16] and [15], it’s not complicated to conclude that time series {Zn}
with symmetric or skewed Skellam marginal distribution can be defined in distribution
as a difference between two independent nonnegative time series that affect the values of
{Zn} in opposite directions, i.e. Zn = Xn−Yn, n ≥ 0. These two hidden time series with
Poisson marginal distributions, named latent components, are in focus of the chapter.
Namely, a very reasonable question arises. Is it possible to identify latent components
when realizations of the time series {Zn} are familiar?

The following text discusses this issue in the case of TINAR(1) time series with skewed
Skellam marginal distribution. The chapter represents a unique combination of well known
facts introduced by several researchers and recent achievements given in [12]. Bearing
in mind the fact that TINAR(1) underlies the mentioned issue, the first part of the
chapter is dedicated to the symmetric TINAR(1) time series, introduced by [15]. In
addition, singularities of the skewed TINAR(1) time series are presented as well. The
second part of the chapter analyzes the possibilities of identifying and predicting latent
components {Xn} and {Yn}, depending on realizations of the skewed TINAR(1) time
series {zn}. Results are based on the expression for calculating mathematical expectation
of the random variable Xn+k, given Zn. Expressions for latent components extraction and
prediction will be the functions of the following arguments: the realization sequence {zn}
of the skewed TINAR(1) and Yule-Walker YW estimates of its marginal distribution
parameters. All YW estimates will be counted upon the random sample Z1, Z2, . . . , ZN
of size N . Except expressions for extracting and predicting latent components, the fitting
quality of such obtained results will be assessed. Also, the application of this type of
modeling on real-life data will be presented.

2.1 Symmetric TINAR(1) time series

This section is dedicated to the construction of the symmetric TINAR(1) time series,
which is built on the sample space of integers including positive and negative values.
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Marginal distribution is symmetric Skellam, whose properties have already been described
in Section 1.3. The time series is built using innovations that come from the symmetric
distribution, which gives many advantages including the possibility of negative correlation
modeling. It should be emphasized that the results given within this section are mostly
taken from [15]. In addition, some calculations are performed in the original way.

2.1.1 Construction of the model

The construction of the model is begun with definition of the new thinning operator. The
thinning operator is defined in quite interesting way by using the equality in distribution
rather than the classical equality, which was usually the case. But first of all, let Zn
be a random variable with symmetric Skellam

(
µ

1−α

)
distribution. Bearing in mind the

properties of the aforementioned distribution, random variable Zn can be represented in
distribution as a difference between two i.i.d. random variables with Po

(
µ

1−α

)
distribu-

tions. Thus, let Zn
d
= Xn − Yn, where Xn and Yn represent two latent Poisson random

variables. It is obvious that the random variable Zn defined in this way can take ei-
ther positive or negative integer values, depending on the interrelationship of its latent
components. The higher values of the component Xn lead to the positive values of Zn,
and vice versa, the higher values of the component Yn lead to the negative values of Zn.
Furthermore, let ”α ◦ ” be a denotement of the binomial thinning operator, defined with
(1.1). Bearing that in mind, the thinning operator ”α ? ” can be defined in a following
way:

(2.1) (α ? Zn)|Zn
d
= (α ◦Xn − α ◦ Yn)|(Xn − Yn),

for α ∈ (0, 1). Counting series involved in α ◦ Xn and α ◦ Yn are mutually independent
and independent of random variables Xn, Yn and Zn.

Now, one can focus attention on calculating conditional probabilities of the random vari-
able α ? Zn, given Zn, i.e. on calculating transition probabilities P (α ? Zn = w|Zn = z).
Transition probabilities can be used for clarifying some properties of the operator ”α ? ”
and the TINAR(1) time series itself. First of all, regarding the distribution of the latent
variables Xn and Yn, one can calculate that

P (Xn = z + y, Yn = y) = P (Xn = z + y) · P (Yn = y) =
e−

µ
1−α
(

µ
1−α

)z+y
(z + y)!

·
e−

µ
1−α
(

µ
1−α

)y
y!

=
e−2 µ

1−α
(

µ
1−α

)z+2y

(z + y)!y!
,(2.2)

where x! = 0 for x ≤ 0. The second, conditioning on latent components leads to the
following:

P (α ? Zn = w|Xn = z + y, Yn = y) = P (α ◦Xn − α ◦ Yn = w|Xn = z + y, Yn = y)

=

y∑
l=0

(
y

l

)
αl(1− α)y−l ×

×
(
z + y

w + l

)
αw+l(1− α)z+y−w−l

=

y∑
l=0

(
y

l

)(
z + y

w + l

)
αw+2l(1− α)z+2y−w−2l.(2.3)

26



Without any loss of generality, let w ∈ Z and z > 0. Finally, by combining the results
obtained in expressions (2.2) and (2.3), the following form of the transition probability
holds:

P (α ? Zn = w|Zn = z) = P (α ◦Xn − α ◦ Yn = w|Xn − Yn = z)

=
∞∑
y=0

P (α ◦Xn − α ◦ Yn = w|Xn = z + y, Yn = y)×

× P (Xn = z + y, Yn = y)

=
∞∑
y=0

e−2 µ
1−α
(

µ
1−α

)z+2y

(z + y)!y!
×

×
y∑
l=0

(
y

l

)(
z + y

w + l

)
αw+2l(1− α)z+2y−w−2l

=
∞∑
y=0

e−2 µ
1−αµz+2y

(z + y)!y!

y∑
l=0

(
y

l

)(
z + y

w + l

)(
α

1− α

)w+2l

.

Given z < 0, it is easy to see that, because of symmetry, P (α ? Zn = w|Zn = z) =
P (α ? Zn = −w|Zn = −z). Although one might find the expression for calculating tran-
sition probabilities way complicated, some properties of the following process cannot be
clarified without direct interference of this conditional probability function.

It is a proper occasion now to introduce a stationary autoregressive time series with
symmetric Skellam

(
µ

1−α

)
marginal distribution.

Definition 2.1.1. Let {Zn}, n ≥ 0 be a time series with symmetric Skellam
(

µ
1−α

)
marginal distribution, defined as

(2.4) Zn = α ? Zn−1 + εn, n ∈ N,

where Z0 represents a random variable with symmetric Skellam
(

µ
1−α

)
distribution, {εn,

n ≥ 1} represents a sequence of i.i.d. integer-valued random variables with symmetric
Skellam(µ) distributions, such that εn and Zn−l are independent for all l ≥ 1 and the
thinning operator ”α? ” is defined by (2.1). From now on, this time series will be denoted
as a symmetric True Integer-valued Autoregressive time series of order 1, or abbreviated,
symmetric TINAR(1).

2.1.2 Properties of the model

Many properties of the symmetric TINAR(1) time series will be discussed bellow. At the
beginning, it would be very helpful to represent TINAR(1) in distribution as a difference
between two independent Poisson INAR(1) time series. For that purpose, the distribution
of α ? Zn−1, n ≥ 1 must be determined first. In accordance with (1.13), the MGF of the
random variable Z with Skellam(µ) distribution is of the form

MZ(s) = eµ(es+e−s−2).

For that reason and due to the fact that εn is independent of all elements of the counting
series involved in α ? Zn−1, one has

Mα?Zn−1(s) =
MZn(s)

Mεn(s)
=
e

µ
1−α (es+e−s−2)

eµ(es+e−s−2)
= e(

µ
1−α−µ)(es+e−s−2) = e

αµ
1−α (es+e−s−2),
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which represent the MGF of the random variable with Skellam
(
αµ

1−α

)
distribution, i.e.

α ? Zn−1 is Skellam
(
αµ

1−α

)
distributed. Now, let

Xn = α ◦Xn−1 + ξn, n ∈ N,
Yn = α ◦ Yn−1 + ηn, n ∈ N

be two independent Poisson INAR(1) time series with the same Po
(

µ
1−α

)
marginal dis-

tributions. Thus, {ξn} and {ηn} are mutually independent processes with the same Po(µ)
distributions. The distribution of α ◦ Xn−1 can be obtained in a similar way as it was
done with the distribution of α ?Zn−1. Namely, bearing in mind the form of MGF of the
random variable X with Po(µ) distribution,

MX(s) = eµ(es−1),

it holds that

Mα◦Xn−1(s) =
MXn(s)

Mξn(s)
=
e

µ
1−α (es−1)

eµ(es−1)
= e(

µ
1−α−µ)(es−1) = e

αµ
1−α (es−1).

To be precise, this means that α◦Xn−1 has Poisson distribution with distribution parame-
ter αµ

1−α . The same can be proven for α◦Yn−1. Then, the distribution of α◦Xn−1−α◦Yn−1

is Skellam
(
αµ

1−α

)
, i.e. α ◦Xn−1 − α ◦ Yn−1

d
= α ? Zn−1. On the other hand, it is obvious

that ξn − ηn
d
= εn. To sum up,

Xn − Yn = (α ◦Xn−1 − α ◦ Yn−1) + (ξn − ηn)
d
= α ? Zn−1 + εn = Zn.

Hence, E(Zn) = E(Xn)−E(Yn) = 0 and V ar(Zn) = V ar(Xn) + V ar(Yn) = 2V ar(Xn) =
2 µ

1−α . Beside this, E(εn) = 0 and V ar(εn) = 2µ.

To reveal more properties of the symmetric TINAR(1) time series, results given in [2]
and [13] are going to be used. Namely, authors gave in [2] two conditions that imply
stationarity of the INAR(1) time series: E(Xn) = λ

1−α and V ar(Xn) = αλ+σ2

1−α2 . Here,
λ and σ2 represent mathematical expectation and variance of the innovation process.
Moreover, if the innovation process has Poisson distribution, then one may claim the
INAR(1) time series is strongly stationary. Poisson INAR(1) time series satisfies all
of these conditions. The first and third condition are evidently satisfied. To prove the
satisfaction of the second condition, one must take into account the fact that E(ξn) =
V ar(ξn) = µ, where {ξn} represents the innovation process of the Poisson INAR(1) time
series. Thus,

V ar(Xn) =
µ

1− α
=
µ(1 + α)

1− α2
=
αµ+ µ

1− α2
,

which proves that Poisson INAR(1) time series satisfies the second condition as well.
Regarding everything mentioned above, one may claim Poisson INAR(1) is the strongly
stationary time series, that is, latent components {Xn} and {Yn} are strongly stationary.
This means that k-dimensional vectors (Xn1 , Xn2 , . . . , Xnk) and (Xn1+h, Xn2+h, . . . , Xnk+h),
as well as vectors (Yn1 , Yn2 , . . . , Ynk) and (Yn1+h, Yn2+h, . . . , Ynk+h), have the same multi-
variate joint distributions for all k, n1, n2, . . . , nk ∈ N and for all h ∈ Z. Hence,

(Zn1+h, Zn2+h, . . . , Znk+h) = (Xn1+h − Yn1+h, Xn2+h − Yn2+h, . . . , Xnk+h − Ynk+h)

= (Xn1+h, Xn2+h, . . . , Xnk+h)− (Yn1+h, Yn2+h, . . . , Ynk+h)
d
= (Xn1 , Xn2 , . . . , Xnk)− (Yn1 , Yn2 , . . . , Ynk)

= (Zn1 , Zn2 , . . . , Znk),
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which proves the strong stationarity of {Zn}. Further, the property of ergodicity for
INAR(p) time series is proven in [13] under certain conditions. For α ∈ (0, 1), all
INAR(1) time series satisfy these conditions, including Poisson INAR(1). Since the
symmetric TINAR(1) time series represents a difference between two independent Pois-
son INAR(1) time series, it must be ergodic as well.

In addition, the following properties of the INAR(1) time series {Xn} appear in [2]:

Xn
d
=

∞∑
l=0

α ◦(l) ξn−l,

(Xn, Xn−k)
d
=

(
α ◦(k) Xn−k +

k−1∑
l=0

α ◦(l) ξn−l, Xn−k

)
,

E(Xn) = αE(Xn−1) + E(ξn) = αnE(X0) + E(ξn)
n−1∑
l=0

αl,

V ar(Xn) = α2nV ar(X0) + (1− α)
n∑
l=1

α2l−1E(Xn−l) + σ2

n∑
l=1

α2(l−1),

γk = Cov(Xn−k, Xn) = αkV ar(Xn−k) = αkγ0,

where σ2 = V ar(ξn) and ”α◦(l) ” is defined as α◦(0) (X)
def
= X, α◦(l)X

def
= α◦ (α◦(l−1)X),

i.e. the notation ”α ◦(l) ” represents l consecutive applications of the operator ”α ◦ ”.
In accordance with properties mentioned above, corresponding formulas for symmetric
TINAR(1) time series can be obtained.

Theorem 2.1.1. For symmetric TINAR(1) time series {Zn} it holds:

i) Zn
d
=
∞∑
l=0

α ?(l) εn−l;

ii) (Zn, Zn−k)
d
=

(
α ?(k) Zn−k +

k−1∑
l=0

α ?(l) εn−l, Zn−k

)
;

iii) E(Zn) = αnE(Z0);

iv) V ar(Zn) = α2nV ar(Z0) + (1− α)
n∑
l=1

α2l−1 (E(Xn−l) + E(Yn−l)) + 2σ2
n∑
l=1

α2(l−1);

v) γk = αkγ0.

Proof.

i) First,

Zn
d
= Xn − Yn

d
=
∞∑
l=0

α ◦(l) ξn−l −
∞∑
l=0

α ◦(l) ηn−l =
∞∑
l=0

(
α ◦(l) ξn−l − α ◦(l) ηn−l

)
.

It has been already mentioned that the distribution of α◦Xn is Po
(
αµ

1−α

)
when Xn is

Po
(

µ
1−α

)
distributed. In general, if random variable X has Poisson distribution with

distribution parameter p, it is easy to show that α◦X also has Poisson distribution,
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but this time with distribution parameter αp. Regarding this fact, the distribution
of α ◦ ξn−l is Po(αµ). Bearing in mind that

α ◦(l) ξn−l = α ◦ (α ◦ (. . . α◦︸ ︷︷ ︸
l times

(ξn−l) . . .)),

the distribution of α ◦(l) ξn−l is Poisson with distribution parameter αlµ. The same
can be shown for α ◦(l) ηn−l. Consequently, the distribution of α ◦(l) ξn−l−α ◦(l) ηn−l
is Skellam

(
αlµ
)
. On the other hand, the distribution of α ? εn−l is Skellam, with

distribution parameter αµ. In the same way as it was done in previous lines, it can be

shown that α?(l) εn−l has Skellam
(
αlµ
)

distribution. Thus, α◦(l) ξn−l−α◦(l) ηn−l
d
=

α ?(l) εn−l. Summa summarum,

Zn
d
=
∞∑
l=0

(
α ◦(l) ξn−l − α ◦(l) ηn−l

) d
=
∞∑
l=0

α ?(l) εn−l.

ii)

(Zn, Zn−k)
d
= (Xn − Yn, Xn−k − Yn−k)
= (Xn, Xn−k)− (Yn, Yn−k)

d
=

(
α ◦(k) Xn−k +

k−1∑
l=0

α ◦(l) ξn−l, Xn−k

)

−

(
α ◦(k) Yn−k +

k−1∑
l=0

α ◦(l) ηn−l, Yn−k

)

=

((
α ◦(k) Xn−k − α ◦(k) Yn−k

)
+

k−1∑
l=0

(
α ◦(l) ξn−l − α ◦(l) ηn−l

)
, Xn−k − Yn−k

)
.

For the same reason as it was the case in (i), α◦(k)Xn−k and α◦(k)Yn−k have the same
Poisson distributions with distribution parameter αk µ

1−α . Hence, α◦(k)Xn−k−α◦(k)

Yn−k has Skellam
(
αk µ

1−α

)
distribution, which is the distribution of α ?(k) Zn−k, i.e.

α◦(k)Xn−k−α◦(k)Yn−k
d
= α?(k)Zn−k. Same as in (i), α◦(l)ξn−l−α◦(l)ηn−l

d
= α?(l)εn−l.

With the well known fact that Xn−k − Yn−k
d
= Zn−k, it finally holds that

(Zn, Zn−k)
d
=

(
α ?(k) Zn−k +

k−1∑
l=0

α ?(l) εn−l, Zn−k

)
.

iii) Regarding the characteristics of the binomial thinning operator, it holds that

E(Zn) = E(Xn)− E(Yn) = αE(Xn−1) + µ− αE(Yn−1)− µ
= αE(Xn−1 − Yn−1) = αE(Zn−1) = . . . = αnE(Z0).
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iv) Here,

V ar(Zn) = V ar(Xn) + V ar(Yn)

= α2nV ar(X0) + (1− α)
n∑
l=1

α2l−1E(Xn−l) + σ2

n∑
l=1

α2(l−1)

+ α2nV ar(Y0) + (1− α)
n∑
l=1

α2l−1E(Yn−l) + σ2

n∑
l=1

α2(l−1)

= α2n(V ar(X0) + V ar(Y0)) + (1− α)
n∑
l=1

α2l−1(E(Xn−l) + E(Yn−l))

+ 2σ2

n∑
l=1

α2(l−1)

= α2nV ar(Z0) + (1− α)
n∑
l=1

α2l−1 (E(Xn−l) + E(Yn−l))

+ 2σ2

n∑
l=1

α2(l−1).

v) Finally, from the independence of Xi and Yj, i, j = 0, 1, 2, . . . , n, it holds

γk = Cov(Zn−k, Zn)

= Cov(Xn−k − Yn−k, Xn − Yn)

= E((Xn−k − Yn−k) · (Xn − Yn))− E(Xn−k − Yn−k)E(Xn − Yn)

= E(Xn−kXn)− E(Xn−k)E(Xn) + E(Yn−kYn)− E(Yn−k)E(Yn)

= Cov(Xn−k, Xn) + Cov(Yn−k, Yn)

= αk(V ar(Xn−k) + V ar(Yn−k))

= αkγ0. 2

In particular, γk = 2αk µ
1−α . Also, one can easily calculate the following:

Corr(Zn−k, Zn) =
Cov(Zn−k, Zn)√
V ar(Zn−k)V ar(Zn)

=
γk
γ0

= αk.

One useful property, necessary for future deriving, will be also proven here. Namely, from
γk = αkγ0, it holds that

αγ0 = γ1 = Cov(Zn−1, Zn) = Cov(Zn−1, α ? Zn−1 + εn).

Since random variables Zn−1 and εn are independent, the following can be obtained:

(2.5) Cov(Zn−1, α ? Zn−1) = αγ0 = αCov(Zn−1, Zn−1).

2.1.3 Symmetric TINAR(1) model with negative lag-one auto-
correlation

It is possible to define a stationary symmetric TINAR(1) time series with negative lag-one
autocorrelation in the following way:

(2.6) Z(1)
n = α ?

(
−Z(1)

n−1

)
+ ζn,
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where Z
(1)
0 is a random variable with Skellam

(
µ

1−α

)
distribution, {ζn} represents a se-

quence of i.i.d. random variables such that ζn and Z
(1)
n−l are mutually independent for all

l ≥ 1 and ζn
d
= (−1)n(ξn − ηn). Thinning operator ”α ? ” is, as usual, defined by (2.1).

Obviously, if Z
(1)
n−1

d
= Xn−1 − Yn−1 and ζn−1

d
= ξn−1 − ηn−1, then ζn

d
= ηn − ξn and

Z(1)
n = α ?

(
−Z(1)

n−1

)
+ ζn

d
= α ◦ Yn−1 − α ◦Xn−1 + ηn − ξn
= Yn −Xn.

This proves the fact that the marginal distribution of the newly defined time series is the
same as the marginal distribution of the time series introduced by (2.4). Also, differences
between latent time series are alternating, i.e.

Z(1)
n

d
=

{
Xn − Yn, n = 0, 2, 4, . . . ,
Yn −Xn, n = 1, 3, 5, . . . .

For time series defined by (2.6), the same or similar properties might be calculated as it

was the case with time series defined by (2.4). The first, E
(
Z

(1)
n

)
= 0 and V ar

(
Z

(1)
n

)
=

V ar(Zn) = 2 µ
1−α . Further,

E
(
Z(1)
n

)
= E(Xn)− E(Yn) = α(E(Xn−1)− E(Yn−1)) = −αE

(
Z

(1)
n−1

)
= . . . = (−α)nE

(
Z

(1)
0

)
.

In addition,

γ1 = Cov
(
Z

(1)
n−1, Z

(1)
n

)
= Cov

(
Z

(1)
n−1, α ?

(
−Z(1)

n−1

)
+ ζn

)
.

From independence of ζn and Z
(1)
n−1 and equality (2.5), it holds

γ1 = Cov
(
Z

(1)
n−1, α ?

(
−Z(1)

n−1

))
= αCov

(
Z

(1)
n−1,−Z

(1)
n−1

)
= −αCov

(
Z

(1)
n−1, Z

(1)
n−1

)
= −αγ0.

Finally, Corr
(
Z

(1)
n−1, Z

(1)
n

)
=

γ1

γ0

= −α < 0, which proves the assumption of negative

lag-one autocorrelation.

2.1.4 Parameter estimation of the symmetric TINAR(1) model

In order to estimate unknown parameters µ and α of the symmetric TINAR(1) model,
the YW estimation method is going to be used. For that purpose, let Z1, Z2, . . . , ZN be
a sample of size N . Since the equality γk = αkγ0 had been already confirmed, it becomes
easy to obtain the YW estimator of the parameter α:

α̂YW =
γ̂1

γ̂0

=

N−1∑
n=1

ZnZn+1

N∑
n=1

Z2
n

.
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Bearing in mind the formula for marginal variance, γ0 = V ar(Zn) = 2 µ
1−α , it is trivial to

obtain the estimator of the parameter µ:

µ̂YW =
1− α̂YW

2
γ̂0 =

1− α̂YW

2N

N∑
n=1

Z2
n.

The asymptotic behavior of these estimators is not in the focus here and won’t be analyzed.
To reveal their asymptotic distribution, see [15].

2.2 Skewed TINAR(1) time series

In this section, a skewed TINAR(1) time series will be analyzed. Results given within
the section represent a generalization of the results from [15]. This applies in particular
to the first two subsections. The last subsection relies on results given in [12].

As well as the symmetric TINAR(1), the skewed TINAR(1) time series may consist of
both positive and negative integer values. The main difference comes from the marginal
distribution of the time series and the distribution of the innovation process. Also, the
thinning operator had to be adapted a bit, which is about to be seen in the text bellow.
The newly introduced time series represent a generalization of the time series introduced
in the previous section.

2.2.1 Construction of the model

Again, the construction of the model will start with introduction of the new thinning

operator. For that purpose, let Zn be a random variable with skewed Skellam
(

µ
1−α ,

ν
1−β

)
distribution. According to the distribution properties given in Section 1.3, this random
variable can be represented in distribution as a difference between two random variables

Xn and Yn with Po
(

µ
1−α

)
and Po

(
ν

1−β

)
distribution respectively, i.e. Zn

d
= Xn − Yn.

Depending on the interrelationship between Xn and Yn, the random variable Zn can take
both positive and negative values. Let ”α ◦” be a binomial thinning operator, introduced
by (1.1). A new thinning operator will be defined in the following way:

(2.7) ((α, β) ? Zn)
d
= (α ◦Xn − β ◦ Yn)|(Xn − Yn),

where α ∈ (0, 1), counting series involved in α ◦Xn and β ◦ Yn are mutually independent
and independent of random variables Xn, Yn and Zn.

Calculating the transition probabilities P ((α, β) ?Zn = w|Zn = z) might be again carried
out through the three-step procedure. Namely, same as it was the case with P (α ? Zn =
w|Zn = z), one first has that

P (Xn = z + y, Yn = y) = e−
µ

1−α

(
µ

1−α

)z+y
(z + y)!

e−
ν

1−β

(
ν

1−β

)y
y!

= e−
µ

1−α−
ν

1−β

(
µ

1−α

)z+y ( ν
1−β

)y
(z + y)!y!

.(2.8)
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The second, conditioning on latent components, it holds

P ((α, β) ? Zn = w|Xn = z + y, Yn = y) = P (α ◦Xn − β ◦ Yn = w|Xn = z + y, Yn = y)

=

y∑
l=0

(
y

l

)
βl(1− β)y−l ·

(
z + y

w + l

)
αw+l(1− α)z+y−w−l.(2.9)

By combining results obtained in (2.8) and (2.9), one gets the following form of the
transition probability for all z > 0 and for all w ∈ Z:

P ((α, β) ? Zn = w|Zn = z) = P (α ◦Xn − β ◦ Yn = w|Xn − Yn = z)

=
∞∑
y=0

P (α ◦Xn − β ◦ Yn = w|Xn = z + y, Yn = y)×

× P (Xn = z + y, Yn = y)

=
∞∑
y=0

e−
µ

1−α−
ν

1−β

(
µ

1−α

)z+y ( ν
1−β

)y
(z + y)!y!

×

×
y∑
l=0

(
y

l

)(
z + y

w + l

)
αw+l(1− α)z+y−w−lβl(1− β)y−l

=
∞∑
y=0

e−
µ

1−α−
ν

1−β
µz+yνy

(z + y)!y!
×

×
y∑
l=0

(
y

l

)(
z + y

w + l

)(
α

1− α

)w+l(
β

1− β

)l
.

With thinning operator described in (2.7), one is able to introduce a more generalized
TINAR(1) time series.

Definition 2.2.1. Let {Zn}, n ≥ 0 be a time series with skewed Skellam
(

µ
1−α ,

ν
1−β

)
marginal distribution, defined as follows:

(2.10) Zn = (α, β) ? Zn−1 + εn, n ∈ N,

where Z0 is a random variable with skewed Skellam
(

µ
1−α ,

ν
1−β

)
distribution, {εn, n ≥ 1}

represents a sequence of i.i.d. integer-valued random variables with skewed Skellam(µ, ν)
distribution, such that εn and Zn−l are independent for all l ≥ 1 and the thinning operator
”(α, β) ? ” is defined by (2.7). The time series introduced here will be denoted as a skewed
TINAR(1) time series of order 1.

2.2.2 Properties of the model

Similar as before, the skewed TINAR(1) time series can be represented in distribution as
a difference between two independent differently parameterized Poisson INAR(1) time

series. Namely, the distribution of (α, β) ? Zn−1 is skewed Skellam
(

αµ
1−α ,

βν
1−β

)
. This can

be proven in the same way as it was done in the previous section with distribution of
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α ? Zn−1, bearing in mind that the MGF of the random variable Z with Skellam(µ, ν)
distribution is given by (1.13). Furthermore, let

Xn = α ◦Xn−1 + ξn, n ∈ N,
Yn = β ◦ Yn−1 + ηn, n ∈ N

be two independent Poisson INAR(1) time series with Po
(

µ
1−α

)
and Po

(
ν

1−β

)
marginal

distributions respectively. Obviously, {ξn} and {ηn} are mutually independent innovation
processes with Po(µ) and Po(ν) distributions respectively. Random variable ξn − ηn

is Skellam(µ, ν) distributed, and hence ξn − ηn
d
= εn. As it was proven earlier, the

distribution of α ◦Xn−1 is Po
(
αµ

1−α

)
, and similarly to this, the distribution of β ◦ Yn−1 is

Po
(

βν
1−β

)
. Thus, α ◦ Xn−1 − β ◦ Yn−1 is Skellam

(
αµ

1−α ,
βν

1−β

)
distributed, which means

that α ◦Xn−1 − β ◦ Yn−1
d
= (α, β) ? Zn−1. Finally,

Xn − Yn = (α ◦Xn−1 − β ◦ Yn−1) + (ξn − ηn)
d
= (α, β) ? Zn−1 + εn = Zn.

In accordance with this equality, it holds that E(Zn) = E(Xn)−E(Yn) = µ
1−α −

ν
1−β and

V ar(Zn) = V ar(Xn) + V ar(Yn) = µ
1−α + ν

1−β .

Discussing the symmetric variant of the TINAR(1) time series, it has been already proven
that Poisson INAR(1) is the strongly stationary and ergodic time series for α ∈ (0, 1).
Since the skewed TINAR(1) time series is a difference of two independent and differently
parameterized Poisson INAR(1) time series, it must also be strongly stationary and
ergodic. The process characterization may be continued relying on the properties of the
INAR(1) time series given in [2].

Theorem 2.2.1. For skewed TINAR(1) time series {Zn} it holds:

i) Zn
d
=
∞∑
l=0

(α, β) ?(l) εn−l;

ii) (Zn, Zn−k)
d
=

(
(α, β) ?(k) Zn−k +

k−1∑
l=0

(α, β) ?(l) εn−l, Zn−k

)
;

iii) E(Zn) = αnE(X0) + µ
n−1∑
l=0

αl − βnE(Y0)− ν
n−1∑
l=0

βl;

iv)

V ar(Zn) = α2nV ar(X0) + (1− α)
n∑
l=1

α2l−1E(Xn−l) + σ2

n∑
l=1

α2(l−1)

+ β2nV ar(Y0) + (1− β)
n∑
l=1

β2l−1E(Yn−l) + σ2

n∑
l=1

β2(l−1);

v) γk = αkγ
(X)
0 + βkγ

(Y )
0 .
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Proof.

i) Similar as earlier, the notation ”(α, β) ?(l) ” represents l consecutive applications of
the operator ”(α, β) ? ”. Bearing in mind all the facts regarding the distribution of
the random variable Zn and its latent components Xn and Yn, it holds

Zn
d
= Xn − Yn

d
=
∞∑
l=0

α ◦(l) ξn−l −
∞∑
l=0

β ◦(l) ηn−l =
∞∑
l=0

(
α ◦(l) ξn−l − β ◦(l) ηn−l

)
.

It has been already shown that the distribution of α ◦(l) ξn−l is Poisson with distri-
bution parameter αlµ. Analogously, the distribution of α ◦(l) ηn−l is Poisson with
distribution parameter βlν. Consequently, the distribution of α ◦(l) ξn−l − β ◦(l)

ηn−l is Skellam
(
αlµ, βlν

)
. On the other hand, the distribution of (α, β) ? εn−l

is Skellam (αµ, βν). Following the proof of Theorem 2.1.1, it can be proven that

(α, β)?(l)εn−l also has Skellam
(
αlµ, βlν

)
distribution. Thus, α◦(l)ξn−l−β◦(l)ηn−l

d
=

(α, β) ?(l) εn−l, which implies that

Zn
d
=
∞∑
l=0

(α, β) ?(l) εn−l.

ii) From the proof of Theorem 2.1.1 one knows that

(Zn, Zn−k)
d
= (Xn, Xn−k)− (Yn, Yn−k)

d
=

((
α ◦(k) Xn−k − β ◦(k) Yn−k

)
+

k−1∑
l=0

(
α ◦(l) ξn−l − β ◦(l) ηn−l

)
, Xn−k − Yn−k

)
.

In accordance with facts already proven in (i), the distributions of α ◦(k) Xn−k and
β ◦(k) Yn−k are Poisson with distribution parameters αk µ

1−α and βk ν
1−β respectively.

Hence, α ◦(k) Xn−k − β ◦(k) Yn−k has Skellam
(
αk µ

1−α , β
k ν

1−β

)
distribution, which

is as well the distribution of (α, β) ?(k) Zn−k. Hence, α ◦(k) Xn−k − β ◦(k) Yn−k
d
=

(α, β) ?(k) Zn−k. Same as in (i), α ◦(l) ξn−l − β ◦(l) ηn−l
d
= (α, β) ?(l) εn−l. Using that

Xn−k − Yn−k
d
= Zn−k, it finally holds

(Zn, Zn−k)
d
=

(
(α, β) ?(k) Zn−k +

k−1∑
l=0

(α, β) ?(l) εn−l, Zn−k

)
.

Proofs for iii), iv) and v) are obtained by direct application of the properties given in [2].

2.2.3 Parameter estimation of the skewed TINAR(1) model

This subsection is based on results published in [12]. In order to estimate unknown
parameters of the model, the YW method is going to be used. Let Z1, Z2, . . . , ZN be a
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sample of size N . As an initial step, the mean, variance and autocovariances of order one
and two are provided, that is

E (Zn) =
µ

1− α
− ν

1− β
,

V ar (Zn) =
µ

1− α
+

ν

1− β
,

γ1 = α
µ

1− α
+ β

ν

1− β
,

γ2 = α2 µ

1− α
+ β2 ν

1− β
.

Further, the system of four equations is generated by equalizing true moments with cor-
responding sample moments. Furthermore, by solving the system thus obtained, one gets
the following estimators:

µ̂ =

(
S̄2 − γ̂1

) (
S̄2 + Z̄

)
−
√(

γ̂2S̄2 − γ̂2
1

) ((
S̄2
)2 − Z̄2

)
2S̄2

=

(1− ρ̂1)
(

1 + Z̄
S̄2

)
−

√
(ρ̂2 − ρ̂2

1)

(
1−

(
Z̄
S̄2

)2
)

2

ν̂ =

(
S̄2 − γ̂1

) (
S̄2 − Z̄

)
+

√(
γ̂2S̄2 − γ̂2

1

) ((
S̄2
)2 − Z̄2

)
2S̄2

=

(1− ρ̂1)
(

1− Z̄
S̄2

)
−

√
(ρ̂2 − ρ̂2

1)

(
1−

(
Z̄
S̄2

)2
)

2

α̂ =

γ̂1

(
S̄2 + Z̄

)
+

√(
γ̂2S̄2 − γ̂2

1

) ((
S̄2
)2 − Z̄2

)
(
S̄2
)2

+ S̄2Z̄

=

ρ̂1

(
1 + Z̄

S̄2

)
+

√
(ρ̂2 − ρ̂2

1)

(
1−

(
Z̄
S̄2

)2
)

1 + Z̄
S̄2

β̂ =

γ̂1

(
S̄2 − Z̄

)
−
√(

γ̂2S̄2 − γ̂2
1

) ((
S̄2
)2 − Z̄2

)
(
S̄2
)2 − S̄2Z̄

=

ρ̂1

(
1− Z̄

S̄2

)
+

√
(ρ̂2 − ρ̂2

1)

(
1−

(
Z̄
S̄2

)2
)

1− Z̄
S̄2

,

where S̄2 = 1
N

N∑
l=1

(Zi − Z̄) represents the sample variance and ρ̂i =
γi
S̄2

, i = 1, 2. Again,

properties of the estimators such obtained haven’t been analyzed, because these are not
in the focus of this dissertation, regarding the intention to extract and predict latent
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components of the skewed TINAR(1) model. The asymptotic behavior of these estimators
might be an interesting topic for the future research.

2.3 Latent components of the skewed

TINAR(1) time series-extraction and prediction

Following results given in [12], possibility of extracting and one-step ahead predicting
latent components {Xn} and {Yn}, upon realizations of the time series {Zn}, will be ex-
amined in this section.

First of all, for any time series {Zn} defined in distribution as a difference between two
independent time series {Xn} and {Yn},

Zn
d
= Xn − Yn,

it will be shown in following lines that

(2.11) E(Xr
n+k|Zn = z) =


∞∑
l=0

E(Xr
n+k|Xn=l+z,Yn=l)P (Xn=l+z)P (Yn=l)

P (Zn=z)
, z > 0,

∞∑
l=0

E(Xr
n+k|Xn=l,Yn=l−z)P (Xn=l)P (Yn=l−z)

P (Zn=z)
, z ≤ 0,

where E(Xr
n+k|Zn = z) is a conditional moment of Xn+k of order r, r ∈ N, given Zn = z.

Namely, let z > 0. In that case,

E(Xr
n+k|Zn = z) =

∞∑
j=0

jrP (Xn+k = j|Zn = z) =
∞∑
j=0

jr
P (Xn+k = j, Zn = z)

P (Zn = z)

=
1

P (Zn = z)

∞∑
j=0

jr
∞∑
l=0

P (Xn+k = j,Xn = l + z, Yn = l)

=
1

P (Zn = z)

∞∑
j=0

jr
∞∑
l=0

P (Xn+k = j|Xn = l + z, Yn = l)

× P (Xn = l + z)P (Yn = l).

Exchanging the order of summation, it holds

E(Xr
n+k|Zn = z) =

1

P (Zn = z)

∞∑
l=0

P (Xn = l + z)P (Yn = l)

×
∞∑
j=0

jrP (Xn+k = j|Xn = l + z, Yn = l)

=
1

P (Zn = z)

∞∑
l=0

E(Xr
n+k|Xn = l + z, Yn = l)

× P (Xn = l + z)P (Yn = l).
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Corresponding equality when z ≤ 0 can be obtained in the same way. Equivalently to
this,

(2.12) E(Y r
n+k|Zn = z) =


∞∑
l=0

E(Y rn+k|Xn=l+z,Yn=l)P (Xn=l+z)P (Yn=l)

P (Zn=z)
, z > 0,

∞∑
l=0

E(Y rn+k|Xn=l,Yn=l−z)P (Xn=l)P (Yn=l−z)

P (Zn=z)
, z ≤ 0.

Now, let {Zn} be a TINAR(1) time series of order 1 with skewed Skellam
(

µ
1−α ,

ν
1−β

)
marginal distribution and let {Xn} and {Yn} be two independent Poisson INAR(1) time

series with Po
(

µ
1−α

)
and Po

(
ν

1−β

)
marginal distributions respectively. Let these two

time series be latent components of {Zn} and let

Zn
d
= Xn − Yn.

In order to extract and predict {Xn} and {Yn} upon realization of {Zn}, conditional
expectations E(Xn+k|Zn = z) and E(Yn+k|Zn = z) for k = 0, 1 are going to be calculated.
For this purpose, the usage of (2.11) and (2.12) for r = 1 provides appropriate results.
Namely, considering the fact that the marginal distribution of the time series {Zn} is

skewed Skellam
(

µ
1−α ,

ν
1−β

)
, i.e.,

(2.13) P (Zn = z) = e−( µ
1−α+ ν

1−β )
(
µ (1− β)

ν (1− α)

) z
2

Iz

(
2

√
µ

1− α
ν

1− β

)
,

where Iz(x) represents the modified Bessel function of the first kind given by (1.11), the
following calculation can be performed. Relying on (2.11) for z > 0 and k = 0, it holds
that

E(Xn|Zn = z) =
1

P (Zn = z)

∞∑
l=0

E(Xn|Xn = l + z, Yn = l)P (Xn = l + z)P (Yn = l)

=
e−( µ

1−α+ ν
1−β )

P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z ( ν
1−β

)l
l!(l + z)!

E(Xn|Xn = l + z, Yn = l)

=
e−( µ

1−α+ ν
1−β )

P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z ( ν
1−β

)l
l!(l + z)!

(l + z)

=
e−( µ

1−α+ ν
1−β )

P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z ( ν
1−β

)l
l!(l + z − 1)!

.

Using (2.13) and (1.11), one confirms that

(2.14) E(Xn|Zn = z) =

√
µ

1− α
ν

1− β

Iz−1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) .
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Similar to this, for z ≤ 0, it can be obtained that

(2.15) E(Xn|Zn = z) =

√
µ

1− α
ν

1− β

I−z+1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) .

Shortened, (2.14) and (2.15) may be pooled in

E(Xn|Zn = z) =

√
µ

1− α
ν

1− β

I|z−1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) .

Since z = E(Zn|Zn = z) = E(Xn − Yn|Zn = z) = E(Xn|Zn = z) − E(Yn|Zn = z), it is
easy to see that E(Yn|Zn = z) = E(Xn|Zn = z)− z. Then, it holds for z > 0 that

E(Yn|Zn = z) = E(Xn|Zn = z)− z =

√
µ

1− α
ν

1− β

Iz−1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) − z

=

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

)
 ∞∑
l=0

(√
µ

1−α
ν

1−β

)2l+z−1
l!(l + z − 1)!

−
∞∑
l=0

z

(√
µ

1−α
ν

1−β

)2l+z−1
l!(l + z)!


=

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

)
 ∞∑
l=0

(l + z)
(√

µ
1−α

ν
1−β

)2l+z−1
l!(l + z)!

−
∞∑
l=0

z

(√
µ

1−α
ν

1−β

)2l+z−1
l!(l + z)!


=

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

) ∞∑
l=1

l
(√

µ
1−α

ν
1−β

)2l+z−1
l!(l + z)!

.

By involving the substitution j = l − 1 and using (1.11), one finds that

E(Yn|Zn = z) =

√
µ

1−α
ν

1−β

Iz

(
2
√

µ
1−α

ν
1−β

) ∞∑
j=0

(√
µ

1−α
ν

1−β

)2j+z+1

j!(j + z + 1)!

=

√
µ

1− α
ν

1− β

Iz+1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) .(2.16)

Similar to this, for z ≤ 0 it can be obtained that

(2.17) E(Yn|Zn = z) =

√
µ

1− α
ν

1− β

I−z−1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) .

Again, (2.16) and (2.17) can be united in

E(Yn|Zn = z) =

√
µ

1− α
ν

1− β

I|z+1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) .
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Now, using the equality (2.11) for k = 1 and r = 1, one gets the expression for E(Xn+1|Zn =
z). Let z > 0. Then,

E(Xn+1|Zn = z) =
1

P (Zn = z)

∞∑
l=0

E(Xn+1|Xn = l + z, Yn = l)P (Xn = l + z)P (Yn = l)

=
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z (
ν

1−β

)l
l!(l + z)!

E(Xn+1|Xn = l + z, Yn = l)

=
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z (
ν

1−β

)l
l!(l + z)!

(α(l + z) + µ)

=
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

(√
µ

1−α
ν

1−β

)z

×

α√ µ

1− α
ν

1− β

∞∑
l=0

(√
µ

1−α
ν

1−β

)2l+z−1

l!(l + z − 1)!
+ µ

∞∑
l=0

(√
µ

1−α
ν

1−β

)2l+z

l!(l + z)!


=

e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

(√
µ

1−α
ν

1−β

)z
α

√
µ

1− α
ν

1− β
Iz−1

(
2

√
µ

1− α
ν

1− β

)

+
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

(√
µ

1−α
ν

1−β

)z
µIz

(
2

√
µ

1− α
ν

1− β

)
.

Finally, the usage of (2.13) provides that

(2.18) E(Xn+1|Zn = z) = α

√
µ

1− α
ν

1− β

Iz−1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) + µ.

Analogously to this, for z ≤ 0,

(2.19) E(Xn+1|Zn = z) = α

√
µ

1− α
ν

1− β

I−z+1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) + µ.

One may unite (2.18) and (2.19) in

E(Xn+1|Zn = z) = α

√
µ

1− α
ν

1− β

I|z−1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) + µ.

For the other latent component {Yn}, equality (2.12) is exploited in order to get one-step
ahead conditional expectation, given Zn. When z > 0, the following can be derived:
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E(Yn+1|Zn = z) =
1

P (Zn = z)

∞∑
l=0

E(Yn+1|Xn = l + z, Yn = l)P (Xn = l + z)P (Yn = l)

=
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z (
ν

1−β

)l
l!(l + z)!

E(Yn+1|Xn = l + z, Yn = l)

=
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

∞∑
l=0

(
µ

1−α

)l+z (
ν

1−β

)l
l!(l + z)!

(βl + ν)

=
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

(√
µ

1−α
ν

1−β

)z

×

β√ µ

1− α
ν

1− β

∞∑
l=0

(√
µ

1−α
ν

1−β

)2l+z+1

l!(l + z + 1)!
+ ν

∞∑
l=0

(√
µ

1−α
ν

1−β

)2l+z

l!(l + z)!


=

e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

(√
µ

1−α
ν

1−β

)z
β

√
µ

1− α
ν

1− β
Iz+1

(
2

√
µ

1− α
ν

1− β

)

+
e
−
(

µ
1−α+ ν

1−β

)
P (Zn = z)

(√
µ

1−α
ν

1−β

)z
νIz

(
2

√
µ

1− α
ν

1− β

)
.

Using (2.13), it holds

(2.20) E(Yn+1|Zn = z) = β

√
µ

1− α
ν

1− β

Iz+1

(
2
√

µ
1−α

ν
1−β

)
Iz

(
2
√

µ
1−α

ν
1−β

) + ν.

For z ≤ 0, it won’t be hard to show that

(2.21) E(Yn+1|Zn = z) = β

√
µ

1− α
ν

1− β

I−z−1

(
2
√

µ
1−α

ν
1−β

)
I−z

(
2
√

µ
1−α

ν
1−β

) + ν.

Finally, (2.20) and (2.21) are affiliated in

E(Yn+1|Zn = z) = β

√
µ

1− α
ν

1− β

I|z+1|

(
2
√

µ
1−α

ν
1−β

)
I|z|

(
2
√

µ
1−α

ν
1−β

) + ν.

At the very end, it is possible to formulate statistics that can be used in order to extract
or predict latent components of the skewed Skellam distributed time series. Statistics are
formulated as follows:

X̂n =

√
µ̂

1− α̂
ν̂

1− β̂

I|Zn−1|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

)
I|Zn|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

) ,

Ŷn =

√
µ̂

1− α̂
ν̂

1− β̂

I|Zn+1|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

)
I|Zn|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

) ,
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X̂n+1 = α̂

√
µ̂

1− α̂
ν̂

1− β̂

I|Zn−1|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

)
I|Zn|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

) + µ̂,

Ŷn+1 = β̂

√
µ̂

1− α̂
ν̂

1− β̂

I|Zn+1|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

)
I|Zn|

(
2
√

µ̂
1−α̂

ν̂

1−β̂

) + ν̂.

One interesting fact can be noticed here. Namely, for µ = ν and α = β, statistics for
extracting and predicting latent components are of the form:

X̂n =
µ̂

1− α̂

I|Zn−1|

(
2µ̂

1−α̂

)
I|Zn|

(
2µ̂

1−α̂

) ,

Ŷn =
µ̂

1− α̂

I|Zn+1|

(
2µ̂

1−α̂

)
I|Zn|

(
2µ̂

1−α̂

) ,

X̂n+1 = α̂
µ̂

1− α̂

I|Zn−1|

(
2µ̂

1−α̂

)
I|Zn|

(
2µ̂

1−α̂

) + µ̂,

Ŷn+1 = α̂
µ̂

1− α̂

I|Zn+1|

(
2µ̂

1−α̂

)
I|Zn|

(
2µ̂

1−α̂

) + µ̂,

which are exactly the formulas proposed in [10] for extracting and predicting latent com-
ponents of the symmetric TINAR(1) time series. To summarize, formulas obtained in
this section represent a generalization of the formulas obtained in the case of symmetric
TINAR(1).

2.4 Simulation study

To verify the effectiveness of the proposed method for extracting and predicting latent
components of the skewed TINAR(1) time series, the idea given in [12] is followed.
Namely, simulations of size N = 5000 are created for each of two independent Poisson
INAR(1) time series. Based on these values, realizations of the skewed TINAR(1) time
series are generated as a difference of the values acquired in Poisson INAR(1) simulations.
By means of realizations thus obtained, parameters µ, ν, α and β are estimated using
proposed YW method. A proposed latent components modeling can be performed now
using parameter estimates and simulated realizations of the skewed TINAR(1) model.
The quality of modeling is estimated by calculating root mean squares (RMS) of dif-
ferences between simulated latent components and their reconstructions and predictions.
The quality of parameter estimates will not be analyzed, since the behavior of these es-
timates is not in the focus of this research, but the convenience of proposed models for
extraction and prediction. This is why the corresponding RMS-s for extractions and
predictions are discussed only. Four skewed TINAR(1) models are simulated with dif-
ferent combinations of parameters. Small values, large values, close and distant values
are all considered. Parameters µ = 0.6, ν = 0.9, α = 0.2, β = 0.7 are used for the first
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model simulation. As may be seen, values of µ and ν are relatively small and close to
each other. The second model simulation is based on relatively different parameter values
µ = 2, ν = 0.5, α = 0.6, β = 0.3. In order to simulate the third model, parameters
µ = 4, ν = 8, α = 0.2, β = 0.4 are used. Values of µ and ν are quite large and different
this time. The fourth model is close to be a symmetric one, since the values of µ and ν
are the same and the values of α and β are very close, i.e. µ = ν = 3, α = 0.6, β = 0.5.

Table 2.1 presents results of the parameter estimation, as well as the correspondingRMS-s
for latent components extractions and predictions. One can conclude that obtained ex-
tractions behave quite good, that is, all RMS values in penultimate column are small
enough. Figure 2.1 shows trajectories of the originally simulated Poisson INAR(1) com-
ponents and their reconstructions extracted from skewed TINAR(1) models. Considering
the impossibility to present graphically the entire simulated Poisson INAR(1) samples,
only initial subsamples of sizes 100 are shown for each of the observed cases. The high
fitting capacity of extracted latent components may be noticed.

Table 2.1: RMS values and YW parameter estimates for skewed TINAR(1) simulations.

Exact values YW estimates

µ ν α β µ̂ ν̂ α̂ β̂ RMS RMS(1)
0.6 0.9 0.2 0.7 0.594 0.756 0.270 0.741 0.774 1.029
2 0.5 0.6 0.3 1.865 0.596 0.638 0.276 0.859 1.874
4 8 0.2 0.4 4.498 7.324 0.075 0.447 1.870 3.403
3 3 0.6 0.5 2.530 3.404 0.680 0.431 1.799 3.380

Figure 2.1: Trajectories of the simulated Poisson components {Xn} and their extractions from skewed
TINAR(1) simulations: (a) µ = 0.6, ν = 0.9, α = 0.2, β = 0.7; (b) µ = 2, ν = 0.5, α = 0.6, β = 0.3;
(c) µ = 4, ν = 8, α = 0.2, β = 0.4; (d) µ = 3, ν = 3, α = 0.6, β = 0.5.
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As may be noticed, lag-one prediction results are not as good as extraction results. This
conclusion is expected, by the way. The prediction RMS values (denoted as RMS(1))
are quite larger than their extraction equivalents, but still acceptable keeping in mind
the mean values of Poisson components. Figure 2.2 shows trajectories of the originally
simulated Poisson INAR(1) components and their lag-one predictions. In comparison
with extractions, trajectories of the lag-one predictions demonstrate a bit reduced ability
of fitting and a bit decreased flexibility.

Figure 2.2: Trajectories of the simulated Poisson components {Xn} and their lag-one predictions obtained
from skewed TINAR(1) simulations: (a) µ = 0.6, ν = 0.9, α = 0.2, β = 0.7; (b) µ = 2, ν = 0.5, α =
0.6, β = 0.3; (c) µ = 4, ν = 8, α = 0.2, β = 0.4; (d) µ = 3, ν = 3, α = 0.6, β = 0.5.

2.5 Application to real-life data

Checking the real power of proposed statistics in extracting and predicting latent compo-
nents of the skewed TINAR(1) time series, i.e. in extracting and predicting the minuend
and the diminutive knowing only the difference, is quite challenging task. Keeping in
mind that original latent components are unknown (since they are latent), extractions
and predictions have nothing to compare with, which makes the real power of proposed
statistics unrevealed. Thus, given task seems even more complicated. To bypass this
problem, statistics were applied on ”artificial” differences, as in [12]. Their components
are not ”so latent” and as such eligible for comparison with corresponding extractions and
predictions. Goal differences of Southampton FC and BV Borussia Dortmund were used
in order to extract and predict number of goals scored by each of these teams or their
opponents. Data were collected from the website www.worldfootball.net. For Southamp-
ton FC, the data from the season 2010/11 to the season 2014/15 were observed, and
for BV Borussia Dortmund, the data from the season 2000/01 to the season 2018/19
were analyzed. Beside these, the differences between number of criminal acts reported to
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two police stations were also observed in order to reconstruct and predict the number of
criminal acts reported to each police station. The data were collected from the website
www.forecastingprinciples.com. The differences in number of robberies reported to two
police stations, number 8800 and 9602, both in Rochester, New York, USA, during the
period from January, 1991 to December, 2001 and the differences in number of aggravated
assaults reported to two police stations, number 700 and 1700, also both in Rochester,
New York, USA, during the same period were in focus. The distributions of all four
data sequences were tested if significantly differ from Skellam distribution. The χ2-test
revealed that all four empirical distributions fit in Skellam distribution (α = 0.05). The
results of the χ2-test are given in Table 2.2.

Table 2.2: Results of the χ2-test for testing differences between empirical and Skellam distributions.

Variable χ2 p-value
Southampton FC goal difference 10.708 0.217

BV Borussia Dortmund goas difference 10.462 0.313
Difference in number of robberies 8.181 0.145

Difference in number of aggravated assaults 4.318 0.888

During the model parameters estimation, obtained values for parameter β were negative,
and hence replaced by small positive numbers. This could be associated to relatively small
sample sizes. Again, the RMS is used as a measure of the fitting quality. As may be seen
in Table 2.3 (penultimate column), the level of errors in extracting the components is,
regarding the observed values, surprisingly good. The quality of extractions is presented
in Figure 2.3.

Table 2.3: RMS values and YW parameter estimates for extractions and predictions from real-life data.

Variable µ̂ ν̂ α̂ β̂ RMS RMS(1)

Southampton FC
goal difference

1.358 2.199 0.274 0.001 0.798 1.421

BV Borussia Dortmund
goal difference

1.544 1.875 0.252 0.001 0.822 1.557

Difference in
number of robberies

1.194 0.850 0.280 0.001 0.425 1.152

Difference in number
of aggravated assaults

0.630 1.221 0.294 0.001 0.536 1.068

As it was the case with the simulations, predictions have a bit higher values of RMS,
denoted as RMS(1). A lack of ability to reach extremes can be noticed. The higher
the extreme, the larger the deviation that prediction model makes from original data.
Nevertheless, the prediction trajectories follow in general the trajectories of the real-life
latent components. Figure 2.4 confirms such claim.
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Figure 2.3: Trajectories of the real-life latent components and their extractions obtained from the cor-
responding skewed TINAR(1) differences: (a) number of goals scored by Southampton; (b) number of
goals scored by Borussia Dortmund; (c) number of robberies reported to the Rochester police station No.
8800; (d) number of aggravated assaults reported to the Rochester police station No. 700.

Figure 2.4: Trajectories of the real-life latent components and their lag-one predictions obtained from the
corresponding skewed TINAR(1) differences: (a) number of goals scored by Southampton; (b) number
of goals scored by Borussia Dortmund; (c) number of robberies reported to the Rochester police station
No. 8800; (d) number of aggravated assaults reported to the Rochester police station No. 700.
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Chapter 3

Random Environment
Integer-Valued Autoregressive model
with discrete Laplace marginal
distribution

A TINAR(1) model defined by (2.4) strongly motivated the researches to define new,
more advanced models suitable for describing the integer-valued data series with both
positive and negative values. Over time, several models with similar structure have ap-
peared. All newly suggested models were stationary, because this property brings some
important simplifications. However, the stationary time series are rigid, since some of
their properties remain conserved in time. Nevertheless, real-life data sequences are usu-
ally not like that. The problem of introducing the non-stationarity into INAR models
with values over entire set of integers has not been considered in more detail so far.

A construction of the non-stationary INAR model with positive and negative realizations
will be in focus of this chapter. The chapter is heavily relied on results from [42], where the
model itself is first mentioned. The non-stationarity is involved using the r states random
environment process, given in Definition 1.2.4. The marginal distribution of the model is
discrete Laplace, already introduced in Subsection 1.3.2. First of all, a construction of the
model is given alongside with its properties, such as the innovation process distribution,
the correlation structure and the k-step ahead conditional expectation. After that, the
attention is paid to the unknown parameters estimation. For that purpose, two different
methods are used: the Yule-Walker method and the conditional least squares method.
Also, the quality of estimates is tested and confirmed on simulated data. Realized param-
eter estimates, based on these simulated data values, converge to true parameter values
as the sample size increases. At the very end, the model is applied to real-life data, where
it shows better results in regard to other models that might be considered as competitors.
Successful application of the newly introduced model significantly increases the flexibility
in modeling the data that is not necessarily above the axis denoting the time component
in the Cartesian coordinate system, but oscillates around that axis.
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3.1 Construction of the model

The results obtained by applying the DLINAR(1) model, defined by (1.7), on real-life
data series gave the motivation for new research. Although the model made some suc-
cess in estimating the data it was tested on, it didn’t manage to adjust to the elements
that deviate significantly from zero due to its property of stationarity. In particular, the
model was struggling to estimate the highest and the lowest peaks, with large differences
between true values and corresponding modeled values. So, a large number of peaks and
high absolute values of those peaks can make an application of the model more difficult.
All the facts mentioned here leave room for model improvement. The first idea was to
improve the DLINAR(1) model in the same way as it was done in [38] with NGINAR(1)
model (see Subsection 1.2.8).

However, an attempt to apply this idea straightforward brought some difficulties, since
the newly acquired model gave the same form of one-step ahead conditional expectation
as it was the case with DLINAR(1). This fact disables one to compare newly acquired
model with DLINAR(1) via RMS-s. To avoid this problem, the DLINAR(1) model is
improved using the concept given in [29], although in a bit simpler form. Namely, it is
assumed that information on the environment state is not only carried by the marginal
distribution parameter, but it can also be expressed through the thinning parameter value.
In other words, it is assumed that the random environment process affects not only the
marginal distribution of the model, but the thinning parameter value as well.

In order to improve the DLINAR(1) model, some notations have to be introduced be-
forehand. To that purpose, let {zn}, n ∈ N0 be a realization of the r states random
environment process {Zn}, mentioned in Definition 1.2.4. Further, for fixed q, s ∈ Er, let
{en(q, s), n ∈ N} be the sequences of i.i.d. random variables. To tag an element of the
new time series, the notation Yn(zn) will be used, where zn determines the distribution of
that element. Bearing in mind everything mentioned above, the following notations are
introduced:

Yn(Zn) =
r∑
s=1

Yn(s)I{Zn=s},

en(Zn−1, Zn) =
r∑
q=1

r∑
s=1

en(q, s)I{Zn−1=q,Zn=s},

αZn =
r∑
s=1

αsI{Zn=s},

where I{Zn=s} represents an indicator function of the event Zn = s. Now, a random
environment DLINAR time series of order 1 may be defined as it was done by [42]. But
before introducing the definition of a new time series that will be in the focus of this
chapter, it is necessary to define a random environment INAR time series based on the
thinning operator ”α � ”, with variable marginal distribution and inconstant thinning
parameter value.

Definition 3.1.1 ([42], Definition 2.1). Let {Zn} be a random environment process with
r possible states from the set Er = {1, 2, ..., r}, r ∈ N. Further, let M = {µ1, µ2, ..., µr},
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µs > 0, s = 1, . . . , r, be the set which consists of all possible mean values in corresponding
states and let A = {α1, α2, ..., αr}, αs ∈ (0, 1), s = 1, . . . , r, be the set which contains all
possible values of thinning parameters corresponding to different states. In this case, the
sequence {Yn(Zn)} is called a Random Environment INAR time series of order 1 based
on the thinning operator ”α� ”, with r states, the distribution parameters set M and the
thinning parameters set A (RrINAR1(M,A)), if the random variable Yn(Zn) is defined
for n ≥ 1 as

(3.1) Yn(Zn) = αZn � Yn−1(Zn−1) + en(Zn−1, Zn),

where the operator ”αZn � ” is defined by (1.6) and for all q, s ∈ Er, {en(q, s)}n∈N are the
sequences of i.i.d. random variables satisfying the following conditions:

(1) sequences of random variables {Zn}, {en(1, 1)}, {en(1, 2)}, ..., {en(r, r)} are mutually
independent;

(2) random variables Zm and em(q, s) are independent of Yn(u) for all n < m and all
q, s, u ∈ Er.

The predefined time series is very complex in general, so a simplified version has to be
considered. To that purpose, instead of considering a random environment process {Zn},
one can suppose knowing a realization {zn} of this process, which is a credible assumption
justified in Subsection 1.2.8. Finally, the following definition holds.

Definition 3.1.2 ([42], Definition 2.2). Let {zn} be a realization of the random environ-
ment process {Zn} with r possible states from the set Er = {1, 2, ..., r}, r ∈ N. Further,
let M = {µ1, µ2, ..., µr}, µs > 0, s = 1, . . . , r, be the set which consists of all possible
mean values in corresponding states and let A = {α1, α2, ..., αr}, αs ∈ (0, 1), s = 1, . . . , r,
be the set which contains all possible values of thinning parameters corresponding to dif-
ferent states. Then, {Yn(zn)} is called a Random Environment Discrete Laplace INAR
time series of order 1 with r states, the distribution parameters set M and the thinning
parameters set A (RrDLINAR1(M,A)) if the random variable Yn(zn) satisfies

(3.2) Yn(zn) = αzn � Yn−1(zn−1) + en(zn−1, zn),

for n ∈ N, where {en(zn−1, zn)}n∈N are given in Definition 3.1.1, conditions (1)-(2) from

Definition 3.1.1 are satisfied and the random variable Yn(zn) has DL
(

µzn
1+µzn

)
distribution,

for all n ∈ N0.

To consider the time series introduced here as fully determined, the distributions of ran-
dom variables en(q, s) must be familiar for all n ≥ 1 and all q, s ∈ Er. These distributions
are given in the theorem that follows.

Theorem 3.1.1 ([42], Theorem 2.1). Let {Yn(zn)} be a RrDLINAR1(M,A) time series
given in Definition 3.1.2 and let zn = s and zn−1 = q for some q and s ∈ Er. If
0 < αs ≤ µs

1+maxq∈Er µq
, then the distribution of the random variable en(q, s) can be written

as a mixture of discrete Laplace and skewed discrete Laplace distributed random variables
in the following form:

(3.3) en(q, s)
d
=



DL
(

µs
1+µs

)
, w.p.

(
1− αsµq

µs−αs

)2

,

SDL
(

µs
1+µs

, αs
1+αs

)
, w.p. αsµq

µs−αs

(
1− αsµq

µs−αs

)
,

SDL
(

αs
1+αs

, µs
1+µs

,
)
, w.p. αsµq

µs−αs

(
1− αsµq

µs−αs

)
,

DL
(

αs
1+αs

)
, w.p.

(
αsµq
µs−αs

)2

.

50



Proof. As in [42], the theorem will be proven using the characteristic function ϕen(q,s)(t)
of the random variable en(q, s). Based on the definition and properties of the time series
and the assumption that zn−1 = q and zn = s, it holds

ϕYn(s)(t) = ϕαs�Yn−1(q)(t) · ϕen(q,s)(t),

whence

ϕen(q,s)(t) =
ϕYn(s)(t)

ϕαs�Yn−1(q)(t)
.

According to [37], the characteristic functions of Yn(s) and αs�Yn−1(q) are of the following
form:

ϕYn(s)(t) =
1

(1 + µs − µseit)(1 + µs − µse−it)
,

ϕαs�Yn−1(q)(t) =
(1 + αs − αseit)(1 + αs − αse−it)

(1 + αs(1 + µq)− αs(1 + µq)eit)(1 + αs(1 + µq)− αs(1 + µq)e−it)
.

Using the presented facts, it holds

ϕen(q,s)(t) =
[1 + αs(1 + µq)− αs(1 + µq)e

it][1 + αs(1 + µq)− αs(1 + µq)e
−it]

(1 + αs − αseit)(1 + αs − αse−it)(1 + µs − µseit)(1 + µs − µse−it)

=
A

(1 + αs − αseit)(1 + αs − αse−it)
+

B

(1 + αs − αseit)(1 + µs − µse−it)

+
C

(1 + µs − µseit)(1 + µs − µse−it)
+

D

(1 + µs − µseit)(1 + αs − αse−it)
.

By equalizing the corresponding coefficients, one gets the system

A(1 + µs)
2 +B(1 + αs)(1 + µs) + C(1 + αs)

2 +D(1 + µs)(1 + αs) = (1 + αs(1 + µq))
2

Aµs(1 + µs) +Bµs(1 + αs) + Cαs(1 + αs) +Dαs(1 + µs) = αs(1 + µq)(1 + αs(1 + µq))

Aµs(1 + µs) +Bαs(1 + µs) + Cαs(1 + αs) +Dµs(1 + αs) = αs(1 + µq)(1 + αs(1 + µq))

Aµ2
s +Bαsµs + Cα2

s +Dαsµs = (αs(1 + µq))
2.

Now, by solving the system thus obtained, it is derived that

A =

(
αsµq
µs − αs

)2

, B = D =
αsµq
µs − αs

(
1− αsµq

µs − αs

)
, C =

(
1− αsµq

µs − αs

)2

.

Bearing in mind the equality (1.16), characteristic functions of the random variables with

DL
(

µs
1+µs

)
, SDL

(
µs

1+µs
, αs

1+αs

)
, SDL

(
αs

1+αs
, µs

1+µs

)
and DL

(
αs

1+αs

)
distributions are of the

form

ϕ1(t) =
1

(1 + µs − µseit)(1 + µs − µse−it)
, ϕ2(t) =

1

(1 + µs − µseit)(1 + αs − αse−it)
,

ϕ3(t) =
1

(1 + αs − αseit)(1 + µs − µse−it)
, ϕ4(t) =

1

(1 + αs − αseit)(1 + αs − αse−it)

respectively. Now, it becomes obvious that the random variable en(q, s) has got the dis-
tribution defined by (3.3).
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At the end of the proof, it is left to verify that A,B,C and D are really probabilities.
For that purpose, it has to be proven that all of them belong to [0, 1] and that A + B +
C + D = 1. The second condition is easily confirmable. To verify the first condition,
it is enough to provide that 0 ≤ αsµq

µs−αs ≤ 1. By solving this double inequality, one gets

αs ≤ µs
1+µq

. As this condition must hold for arbitrary q and s, and αs ∈ (0, 1), it holds

that 0 < αs ≤ µs
1+maxq∈Er µq

. This fact completes the proof.

The previous theorem enables an interesting observation. Namely, in accordance with
distribution of the random variable en(q, s) given in Theorem 3.1.1 and with fact that
the discrete Laplace or skewed discrete Laplace distributed random variable can be rep-
resented in distribution as a difference between two random variables with geometric
distributions, one is able to make an interesting conclusion, given in the following corol-
lary.

Corollary 3.1.1 ([42], Corollary 2.1). If the condition 0 < αs ≤ µs
1+maxq∈Er µq

is satisfied,

then the random variable en(q, s) has the same distribution as the difference of two i.i.d.
random variables εn(q, s) and ηn(q, s) distributed as

(3.4)

 Geom
(

µs
1+µs

)
, w.p.

(
1− αsµq

µs−αs

)
Geom

(
αs

1+αs

)
, w.p. αsµq

µs−αs .

The fact given in previous corollary may help one to calculate in a simplified way many
properties of the innovation process, or the properties of the RrDLINAR1(M,A) time
series itself. Some of them are presented in the following corollary.

Corollary 3.1.2 ([42], Corollary 2.2). On the assumption that zn = s and zn−1 = q,
q, s ∈ Er, it holds:

E(en(q, s)) = 0,

V ar(en(q, s)) = 2(µs(1 + µs)− αsµq(1 + 2αs + αsµq)).

Proof. The proof of the first equality is trivial, given that εn(q, s) and ηn(q, s) have the
same distributions. Bearing in mind the form of the distribution of εn(q, s) and ηn(q, s)
and using properties of the probability generating function (PGF), it is easy to prove that

V ar(ηn(q, s)) = V ar(εn(q, s)) = Φ′′εn(q,s)(1) + Φ′εn(q,s)(1)−
[
Φ′εn(q,s)(1)

]2
= µs(1 + µs)− αsµq(1 + 2αs + αsµq).

Hence, it holds that

V ar(en(q, s)) = V ar(εn(q, s)) + V ar(ηn(q, s))

= 2(µs(1 + µs)− αsµq(1 + 2αs + αsµq)).

Remark . Some additional explanations are provided. First of all, for fixed zn = s and
zn−1 = q, q, s ∈ Er, random variables εn(q, s) and ηn(q, s) are distributed in the same way
as the innovation process of the RrNGINAR(M,A,P) model (see [29]). In addition,
when q = s, the distribution of {en(q, s)} matches with the distribution of the innovation
process of the DLINAR(1) model, given in [37].
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3.2 Properties of the model

This section deals with the most important properties of the RrDLINAR1(M,A) model,
such as k-step ahead conditional expectation and correlation structure. The results ob-
taining methodology in the case of RrDLINAR1(M,A) model is quite similar to the one
given in [37] in the case of DLINAR(1) model, which is expected given their common
nature.

Some properties can be derived by observing the RrDLINAR1(M,A) time series as a
difference between two mutually independent RrNGINAR(M,A,P) time series, when
P = {1}. In order to prove this claim, the following has been undertaken. For given sets
M,A and P = {1}, let

X(1)
n (zn) = αzn ∗X

(1)
n−1(zn−1) + εn(zn−1, zn), n ∈ N,

X(2)
n (zn) = αzn ∗X

(2)
n−1(zn−1) + ηn(zn−1, zn), n ∈ N

be two mutually independent RrNGINAR(M,A,P), P = {1} time series with the same

geometric Geom
(

µs
1+µs

)
, µs ∈ M, marginal distributions for fixed zn = s. Further, let

{εn(q, s)} and {ηn(q, s)} be two mutually independent processes with the same marginal
distributions given in Corollary 3.1.1, for fixed values zn = s and zn−1 = q. By the
definition of the RrNGINAR(M,A,P) time series given in Subsection 1.2.9, random

variables X
(1)
n−k(u) and εn(q, s), as well as X

(2)
n−k(u) and ηn(q, s), are mutually independent

for all k ≥ 1 and for all q, s, u ∈ Er.

Let {Yn(zn)} be aRrDLINAR1(M,A) time series withDL
(

µs
1+µs

)
marginal distribution,

given zn = s. Since marginal distributions of {X(1)
n (zn)} and {X(2)

n (zn)} are Geom
(

µs
1+µs

)
,

Theorem 1.4.1, provides that

αzn � Yn−1(zn−1)
d
= αzn ∗X

(1)
n−1(zn−1)− αzn ∗X

(2)
n−1(zn−1),

which implies, alongside with Corollary 3.1.1, that

X(1)
n (zn)−X(2)

n (zn) =
(
αzn ∗X

(1)
n−1(zn−1)− αzn ∗X

(2)
n−1(zn−1)

)
+ (εn(zn−1, zn)− ηn(zn−1, zn))
d
= αzn � Yn−1(zn−1) + en(zn−1, zn) = Yn(zn).

Using the results obtained in [29], it becomes trivial to show that E(Yn(zn)) = 0 and

V ar(Yn(zn)) = 2V ar
(
X

(1)
n (zn)

)
= 2µzn(1 + µzn).

The following property of ”α� ” provides a very useful decomposition. For that purpose,
let Y, X(1), X(2) and Dl, l ≥ 1, be random variables which satisfy conditions:

(i) Y ∼ DL
(

µ
1+µ

)
, X(1) ∼ Geom

(
µ

1+µ

)
, X(2) ∼ Geom

(
µ

1+µ

)
;

(ii) Dl ∼ DL
(

α
1+α

)
for all l ≥ 1;

(iii) random variables Y,X(1), X(2), Dl, l ≥ 1, and random variables involved in ”α ∗ ”
are independent.
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In accordance with Theorem 1.4.3,

(3.5) α� Y d
= sgn(Y )(α ∗ |Y |) +

min{X(1),X(2)}∑
l=1

Dl.

This result enables one to prove the following claim.

Theorem 3.2.1 ([42], Theorem 3.1). The RrDLINAR1(M,A) time series {Yn(zn)} is
a Markov process.

Proof. At the very beginning, events A and B are defined as follows:

A = {Yj(zj) = yj, j = 0, 1, . . . , n− 2}, B = A ∪ {Yn−1(zn−1) = yn−1}.

For the purpose of clearer writing, the following notation is introduced:

δn−1(zn−1, zn) =

min
{
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

}∑
l=1

Dl(zn).

According to (3.5), it holds

αzn � Yn−1(zn−1) = sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|) + δn−1(zn−1, zn),

whereby X
(1)
n−1(zn−1) and X

(2)
n−1(zn−1) have the same Geom

(
µzn−1

1+µzn−1

)
distributions and

Dl(zn) is DL
(

αzn
1+αzn

)
distributed for all l = 1, 2, . . . ,min

{
X

(1)
n−1(zn−1), X

(2)
n−1(zn−1)

}
.

Now,

P (Yn(zn) = yn|B) =

P(sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|) + δn−1(zn−1, zn) + en(zn−1, zn) = yn|B) .

Bearing in mind the property (iii) mentioned above and the condition (2) from Definition
3.1.1, it becomes obvious that

P (Yn(zn) = yn|B) =
+∞∑
l=−∞

P (sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|) = l|B)

× P (δn−1(zn−1, zn) + en(zn−1, zn) = yn − l)

=
+∞∑
l=−∞

(
|yn−1|+ |l| − 1

|l|

)
α
|l|
zn

(1 + αzn)|yn−1|+|l|

× P (δn−1(zn−1, zn) + en(zn−1, zn) = yn − l) .

Now, since the last expression depends only on yn−1, it becomes obvious that the newly
introduced RrDLINAR1(M,A) time series is Markov process.

3.2.1 The k-step ahead conditional expectation

The possibility of approximating the (unknown) future values of the time series is reflected
through the conditional expectation. The following theorem discusses this possibility.
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Theorem 3.2.2 ([42], Theorem 3.2). Let {Yn(zn)} be a RrDLINAR1(M,A) time series.
Then, for k ≥ 1,

(3.6) E(Yn+k(zn+k)|Yn(zn)) =

(
k∏
l=1

αzn+l

)
Yn(zn).

Proof. A mathematical induction will be used to derive the proof. In the initial step, let
k = 1. Given Theorem 1.4.2, it holds

E(Yn+1(zn+1)|Yn(zn)) = E(αzn+1 � Yn(zn)|Yn(zn)) + E(en+1(zn, zn+1))

= αzn+1Yn(zn).(3.7)

Suppose the equation (3.6) holds for k < m. In the inductive step, (3.6) is verified for
k = m as well, keeping in mind the Markov property of the RrDLINAR1(M,A) time
series. Namely,

E(Yn+m(zn+m)|Yn(zn)) = E
[
E(Yn+m(zn+m)|Yn+m−1(zn+m−1), . . . , Yn(zn))|Yn(zn)

]
= E

[
E(Yn+m(zn+m)|Yn+m−1(zn+m−1))|Yn(zn)

]
= E(αzn+mYn+m−1(zn+m−1)|Yn(zn))

= αzn+m

(
m−1∏
l=1

αzn+l

)
Yn(zn)

=

(
m∏
l=1

αzn+l

)
Yn(zn).

This makes the proof of the theorem fully completed.

3.2.2 Correlation structure

One of the most important features of any autoregressive time series is the interdependence
of its individual elements. This feature is known as a correlation structure, which is
discussed in the following theorem.

Theorem 3.2.3 ([42], Theorem 3.3). The RrDLINAR1(M,A) time sreies {Yn(zn)}
given by (3.2) is positively correlated with its autocorrelation function given as

(3.8) Corr(Yn(zn), Yn−k(zn−k)) =


(
k−1∏
l=0

αzn−l

)√
µzn−k (1+µzn−k )

µzn (1+µzn )
, k ≥ 0,(

−k∏
l=1

αzn+l

)√
µzn (1+µzn )

µzn−k (1+µzn−k )
, k < 0.

Proof. Knowing that {Yn(zn)} is a time series with k-step ahead conditional expecta-

tion of the form E(Yn+k(zn+k)|Yn(zn)) =
(∏k

l=1 αzn+l

)
Yn(zn), unconditional expectation

E(Yn(zn)) = 0 and finite variance V ar(Yn(zn)) = 2µzn(1 + µzn), for k ≥ 0, it becomes
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easy to obtain that

Cov(Yn(zn), Yn−k(zn−k)) = Cov(E(Yn(zn)|Yn−k(zn−k)), Yn−k(zn−k))

= Cov

((
k−1∏
l=0

αzn−l

)
Yn−k(zn−k), Yn−k(zn−k)

)

=

(
k−1∏
l=0

αzn−l

)
V ar(Yn−k(zn−k))

= 2

(
k−1∏
l=0

αzn−l

)
µzn−k(1 + µzn−k),

whence it holds that

Corr(Yn(zn), Yn−k(zn−k)) =

2

(
k−1∏
l=0

αzn−l

)
µzn−k(1 + µzn−k)√

2µzn(1 + µzn)2µzn−k(1 + µzn−k)

=

(
k−1∏
l=0

αzn−l

)√
µzn−k(1 + µzn−k)

µzn(1 + µzn)
.

Similarly to this, for k < 0,

Cov(Yn(zn), Yn−k(zn−k)) = E(Yn(zn) · Yn−k(zn−k))
= E [E(Yn(zn)Yn−k(zn−k)|Yn(zn))]

= E

(
Yn(zn)

(
−k∏
l=1

αzn+l

)
Yn(zn)

)

=

(
−k∏
l=1

αzn+l

)
V ar(Yn(zn))

=

(
−k∏
l=1

αzn+l

)
2µzn(1 + µzn),

whence one obtains

Corr(Yn(zn), Yn−k(zn−k)) =

(
−k∏
l=1

αzn+l

)√
µzn(1 + µzn)

µzn−k(1 + µzn−k)
.

Remark . If zn = zn−1 = · · · = zn−k = s, then Corr(Yn(zn), Yn−k(zn−k)) = α
|k|
s . Ac-

cording to Theorem 1.4.4, this matches with autocorrelation function of the DLINAR(1)
time series.

In addition, a validity of the double inequality 0 < Corr(Yn(zn), Yn−k(zn−k)) < 1 will be
proven. Bearing in mind the equality (3.8) and the facts that µzn−k > 0, µzn > 0 and
αzn−l > 0 for all l = 0, 1, . . . , k − 1, it is obvious that Corr(Yn(zn), Yn−k(zn−k)) > 0 when
k ≥ 0. It is left to prove the validity of Corr(Yn(zn), Yn−k(zn−k)) < 1.
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For all l = 0, 1, . . . , k − 1, αzn−l ≤
µzn−l

1+maxq∈Er µq
, so, obviously

αzn−l ≤
µzn−l

1 + µzn−l−1

<
µzn−l
µzn−l−1

<
1 + µzn−l
µzn−l−1

.

Then,

α2
zn−l

<
µzn−l

1 + µzn−l−1

·
1 + µzn−l
µzn−l−1

,

which implies that αzn−l <

√
µzn−l (1+µzn−l )

µzn−l−1
(1+µzn−l−1

)
, and further,

k−1∏
l=0

αzn−l <

√
µzn(1 + µzn)

µzn−1(1 + µzn−1)

√
µzn−1(1 + µzn−1)

µzn−2(1 + µzn−2)
· · ·

√
µzn−k+1

(1 + µzn−k+1
)

µzn−k(1 + µzn−k)

=

√
µzn(1 + µzn)

µzn−k(1 + µzn−k)
.

Finally, it holds

Corr(Yn(zn), Yn−k(zn−k)) <

√
µzn(1 + µzn)

µzn−k(1 + µzn−k)

√
µzn−k(1 + µzn−k)

µzn(1 + µzn)
= 1.

It may be shown in a similar way that 0 < Corr(Yn(zn), Yn−k(zn−k)) < 1 when k < 0.

Regarding the form of the autocorrelation function, it may be concluded that it decreases
toward 0, when k increases infinitely. This feature places the RrDLINAR1(M,A) time
series in the category of weakly correlated time series.

3.3 Parameter estimation of the RrDLINAR1(M,A)
model

This section will be dedicated to the estimation of the RrDLINAR1(M,A) model pa-
rameters. For that purpose, two different kinds of estimates will be provided, Yule-Walker
(YW ) and conditional least squares (CLS) estimates. Although the RrDLINAR1(M,A)
model represents a generalization of the DLINAR(1) model, it is not stationary, and
therefore it can not be ergodic, so the approach for proving the strong consistency given
in [37] won’t be helpful. In order to prove the strong consistency, a procedure similar to
one described in [38] will be exploited. The main idea of the procedure might be described
in two steps. In the first step, the initial sample Y1(z1), Y2(z2), . . . , YN(zN) is divided into
r subsamples in the way that each subsample contains all the elements corresponding
to only one state and doesn’t contain elements corresponding to any other state. This
partition can be written as:

Is = {j ∈ {1, 2, . . . , N}|zj = s}, s ∈ {1, 2, . . . , r},
r⋃
s=1

Is = {1, 2, . . . , N}, |Is| = ns, n1 + n2 + · · ·+ nr = N,

Ks = {Ys1(s), Ys2(s), . . . , Ysns (s)}, si ∈ Is, si < si+1, i ∈ {1, 2, . . . , ns − 1},
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where Ks collects all the elements corresponding to the state s, Is collects proper indexes
of those elements and ns represents cardinal number of the set Ks for all s ∈ {1, 2, . . . , r}.
In the second step, parameters µs and αs are estimated only using elements from the set
Ks.

By observing an arbitrary Ks, s ∈ {1, 2, . . . , r}, it becomes clear that this set is consisted
of is sequences of consecutive elements which are all in the same state s. Each of these se-
quences may be considered as a subsample of its own, denoted as Ks,l, l = 1, 2, . . . , is, and
called the ‘maximal’ subsample. It is maximal in the way that it cannot be expanded nei-
ther to the left nor right side without violating the property that all of its elements corre-
spond to the state s. To be precise, for arbitrary Ks,l, l = 1, 2, . . . , is, one can find natural
numbers ml and nl, ml < nl, such that zml 6= s, zml+1 = zml+2 = · · · = znl = s, znl+1 6= s.
Now, each of these maximal subsamples Ks,l, l = 1, 2, . . . , is, may be observed as a
sample of the DLINAR(1) time series with marginal distribution parameter µs and
thinning parameter αs, and subsample Ks represents a disjoint union of subsamples
Ks,1, Ks,2, . . . Ks,is .

Now on, one can focus on obtaining the Yule-Walker estimates of unknown parameters of
the model.

3.3.1 Yule-Walker estimation

In accordance with previous notations, the index sets Js,l = {j ∈ {1, 2, . . . , N}|Yj(zj) ∈
Ks,l}, l = 1, 2, . . . , is are introduced in the first place alongside with their cardinal numbers
ns,l = |Js,l|, ns,1 + ns,2 + · · · + ns,is = ns. According to [37], the DLINAR(1) time
series is stationary and ergodic, whence the corresponding sample variance and the first-
order sample covariance are strongly consistent estimates of the variance and the first-
order covariance of the time series. Finally, by observing only the subsample Ks,l, these
estimators are of the form

γ̂
(s)
0,l =

1

ns,l

∑
i∈Js,l

Y 2
i (s) and γ̂

(s)
1,l =

1

ns,l

∑
i,i+1∈Js,l

Yi(s)Yi+1(s).

The following definition describes the estimators based on entire subsamples Ks, s =
1, 2, . . . , r, without taking into account that they are consisted of unconnected parts, i.e.
of maximal subsamples.

Definition 3.3.1 ([42], Definition 4.1). For all s = 1, 2, . . . , r, estimators obtained from
the subsample Ks with realizations corresponding to the state s are defined as

(3.9) γ̂
(s)
0 =

1

ns

∑
i∈Is

Y 2
i (s), γ̂

(s)
1 =

1

ns

∑
i,i+1∈Is

Yi(s)Yi+1(s).

The following theorem deals with strong constancy of mentioned estimators.

Theorem 3.3.1 ([42], Theorem 4.1). Estimators γ̂
(s)
0 and γ̂

(s)
1 from Definition 3.3.1 are

strongly consistent.
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Proof. This proof follows the idea given in [38]. First of all, the strong consistency of γ̂
(s)
0

will be proven, i.e. it will be shown that the equality P (γ̂
(s)
0 → γ

(s)
0 , ns →∞) = 1 holds.

As mentioned earlier, γ̂
(s)
0,l is strongly consistent for all l ∈ {1, 2, . . . , is} and thus, it holds

that γ̂
(s)
0,l → γ

(s)
0 , ns,l →∞, everywhere except on the set Ωs,l, where P (Ωs,l) = 0. On the

other hand, it holds

γ̂
(s)
0 =

1

ns

∑
i∈Is

Y 2
i (s) =

1

ns

is∑
l=1

∑
i∈Js,l

Y 2
i (s) =

is∑
l=1

ns,l
ns

1

ns,l

∑
i∈Js,l

Y 2
i (s) =

is∑
l=1

ns,l
ns
γ̂

(s)
0,l .

Let ns = ns,1 + ns,2 + · · · + ns,is . On the assumption that ns → ∞, there is at least one
ns,l that approaches infinity. In this stage, one can change the numeration of subsamples
to get the following notations:

ns,l → ∞, for all l ∈ {1, 2, . . . , b},
ns,l → cl for all l ∈ {b+ 1, b+ 2, . . . , is}.(3.10)

This fact provides two important conclusions. First of all,

lim
ns→∞

ns,l
ns

= 0, for l ∈ {b+ 1, b+ 2, . . . , is}.

The second,

ns = ns,1 + ns,2 + · · ·+ ns,is =
b∑
l=1

ns,l +
is∑

l=b+1

ns,l −→
b∑
l=1

ns,l +
is∑

l=b+1

cl,

when ns → ∞, whereby the sum
is∑

l=b+1

cl is finite and thus incomparable with ns,l for all

l ∈ {1, 2, . . . , b}. Hence, it is allowed to write ns = ns,1 + ns,2 + · · · + ns,b if a limit value
ns →∞ is considered. Regarding everything mentioned above,

lim
ns→∞

γ̂
(s)
0 = lim

ns→∞

b∑
l=1

ns,l
ns
γ̂

(s)
0,l ,

and consequently,

lim
ns→∞

γ̂
(s)
0 = lim

ns,l→∞, ∀l∈{1,2,...,b}
γ̂

(s)
0

= lim
ns,l→∞, ∀l∈{1,2,...,b}

b∑
l=1

ns,l
ns
γ̂

(s)
0,l

= γ
(s)
0 lim

ns,l→∞, ∀l∈{1,2,...,b}

b∑
l=1

ns,l
ns

= γ
(s)
0 .(3.11)

At the beginning of the proof, it was mentioned that lim
ns,l→∞

γ̂
(s)
0,l = γ

(s)
0 holds everywhere

except on the set Ωs,l, whereby P (Ωs,l) = 0, and hence, the equality (3.11) holds every-

where except on the set Ωs =
⋃b
l=1 Ωs,l, where

P (Ωs) = P

(
b⋃
l=1

Ωs,l

)
≤

b∑
l=1

P (Ωs,l) = 0.
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From the non-negativity of probability, it follows that P (Ωs) = 0. Thus, γ̂
(s)
0 is a strongly

consistent estimator of the variance γ
(s)
0 .

The proof for γ̂
(s)
1 is analogous. It holds that

γ̂
(s)
1 =

1

ns

∑
i,i+1∈Is

(Yi(s)Yi+1(s))

=
1

ns

is∑
l=1

∑
i,i+1∈Js,l

(Yi(s)Yi+1(s))

=
is∑
l=1

ns,l
ns

1

ns,l

∑
i,i+1∈Js,l

(Yi(s)Yi+1(s))

=
is∑
l=1

ns,l
ns
γ̂

(s)
1,l

=
b∑
l=1

ns,l
ns
γ̂

(s)
1,l +

is∑
l=b+1

ns,l
ns
γ̂

(s)
1,l .

In the same way as it was done in the first part of the proof, one derives that

lim
ns→∞

γ̂
(s)
1 = lim

ns→∞

b∑
l=1

ns,l
ns
γ̂

(s)
1,l

= lim
ns,l→∞, ∀l∈{1,2,...,b}

b∑
l=1

ns,l
ns
γ̂

(s)
1,l

= γ
(s)
1 lim

ns,l→∞, ∀l∈{1,2,...,b}

b∑
l=1

ns,l
ns

= γ
(s)
1 .(3.12)

Finally, the equality (3.12) holds everywhere except on the set Ω1
s =

⋃b
l=1 Ω1

s,l. In the
same way as before, it is easy to prove that P (Ω1

s) = 0. Hence, one may claim that

P
(
γ̂

(s)
1 → γ

(s)
1 , ns →∞

)
=1, which actually represents the strong consistency of the es-

timator γ̂
(s)
1 .

In final stage, parameters µs and αs are estimated on the subsample Ks. According to
Theorem 1.4.4, it holds

γ
(s)
0 = 2µs(1 + µs), γ

(s)
1 = 2αsµs(1 + µs).

Thus,

µ̂YWs = −1

2
+

1

2

√
1 + 2γ̂

(s)
0 , α̂YWs =

γ̂
(s)
1

γ̂
(s)
0

.

Now, the estimator µ̂YWs is strongly consistent, according to Theorem 1.4.5 and the fact
that f(x) = −1

2
+ 1

2

√
1 + 2x, x ≥ 0, is a continuous function. The strong consistency of

α̂YWs follows from Theorem 1.4.6, when p = 1.
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3.3.2 Conditional least squares estimation

In order to obtain the CLS estimates of unknown parameters of the model, one sup-
poses that, for fixed s = 1, . . . , r, the entire subsample Ks represents the sample of the
DLINAR(1) time series with marginal distribution parameter µs and thinning parameter
αs. This assumption is taken to enable CLS estimates providing and does not play any
role in ensuring the validity of estimates such obtained. In particular, the assumption will
not be used in confirming the property of strong consistency.

A CLS estimator of αs is provided by minimizing the function

Q
(s)
N (µs, αs) =

∑
i,i+1∈Is

(Yi+1(s)− E(Yi+1(s)|Yi(s)))2 =
∑

i,i+1∈Is

(Yi+1(s)− αsYi(s)))2,

where s = 1, 2, . . . , r. Unfortunately, regarding the fact that µs does not figure within Q
(s)
N ,

the one-step CLS method cannot provide the estimate of this parameter. The two-step
conditional least squares procedure given in [26] may be an alternative. Yet, the equa-
tions obtained using this alternative method contain parameter µs as an argument of the
polynomial functions of degree 4 or higher, which makes the procedure too complicated.
This is the reason why the mentioned method isn’t taken into account. To summarize,
only the one-step CLS estimate of αs, s = 1, . . . , r, is provided.

The partial derivative of the function Q
(s)
N with respect to αs is of the form

∂Q
(s)
N

∂αs
= −2

∑
i,i+1∈Is

Yi(s)(Yi+1(s)− αsYi(s))).

By equalizing the previous expression with zero and solving the equation thus obtained
for parameter αs, one gets the CLS estimator of αs as

α̂CLSs =

∑
i,i+1∈Is

Yi(s)Yi+1(s)∑
i,i+1∈Is

Y 2
i (s)

.

It has remained to prove the strong consistency of α̂CLSs . It is obvious that

α̂CLSs =

∑
i,i+1∈Is

Yi(s)Yi+1(s)∑
i,i+1∈Is

Y 2
i (s)

=
γ̂

(s)
1

1
ns

∑
i,i+1∈Is

Y 2
i (s)

=
γ̂

(s)
1

γ̂
(s)
0 − 1

ns

is∑
l=1

Y 2
nl

(s)

,

where Ynl(s) represents the last element inside the maximal subsample Ks,l. Now,

lim
ns→∞

1

ns

∑
i,i+1∈Is

Y 2
i (s) = lim

ns→∞

(
γ̂

(s)
0 −

1

ns

is∑
l=1

Y 2
nl

(s)

)
= γ

(s)
0 .

Theorem 3.3.1 proved that lim
ns→∞

γ̂
(s)
0 = γ

(s)
0 everywhere except on the set Ωs, P (Ωs) = 0.

Beside this, lim
ns→∞

1
ns

is∑
l=1

Y 2
nl

(s) = 0. Hence,

lim
ns→∞

1

ns

∑
i,i+1∈Is

Y 2
i (s) = γ

(s)
0
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everywhere except on the set Ωs. To be precise,
1

ns

∑
i,i+1∈Is

Y 2
i (s) is the strongly consistent

estimator of γ
(s)
0 . Bearing in mind that γ̂

(s)
1 is the strongly consistent estimator of γ

(s)
1 , a

strong consistency of α̂CLSs follows again from the Theorem 1.4.6 when p = 1.

3.4 Simulations study-Estimates quality analysis

As presented in [42], the quality of YW and CLS estimates defined in previous sec-
tion will be examined. The aim is to show that the estimates of unknown parameters
in practice really converge towards their true values, as the sample size increases. This
may be achieved by simulating samples of desired sizes from the observed time series and
calculating the estimates over such samples. Thus, hundred RrDLINAR1(M,A) repli-
cates are simulated, each of size 10000. Of course, it was necessary at first to simulate
random environment processes, and then, using simulations thus obtained, to simulate
corresponding RrDLINAR1(M,A) time series. Sequences {Yn(zn)} are simulated us-
ing the fact that the model itself is distributed as a difference between two independent
RrNGINAR(M,A,P) time series {X(1)

n (zn)} and {X(2)
n (zn)} when P = {1}. Hence,

hundred pairs of mutually independent RrNGINAR(M,A,P) time series {X(1)
n (zn)}

and {X(2)
n (zn)} are simulated first, and RrDLINAR1(M,A) time series {Yn(zn)} repre-

sent their differences.

In practice, it is often sufficient to observe time series with two or three different states,
so these cases are considered separately bellow. The following parameters should be set:

• number of states r,

• distribution parameter set M = {µ1, µ2, . . . , µr},

• thinning parameter set A = {α1, α2, . . . , αr},

• initial states probability vector pvec of the length r,

• transition probability matrix pmat of dimension r × r, contained of transition prob-
abilities [pmat]qs from the state q to the state s.

3.4.1 The case of two states

It has been assumed here that the random environment process takes its values from
the set E2 = {1, 2}. To gain an insight into how parameter values affect the estimates
behavior, the following combinations of parameters will be distinguished.

1.1. The distribution parameter set is M = {1, 3}. Bearing in mind the condition

αs ∈
(

0, µs
1+maxq∈Er µq

]
, the case when parameters αs, s = 1, 2, were close to their

upper limits has been analyzed. So, the thinning parameter set is A = {0.25, 0.7}.
A fair initial state has been set, i.e. pvec = (0.5, 0.5). As for the transition proba-
bility matrix, its significance is reflected trough the fact that it determines the ap-
pearance of the random environment process, and therefore the appearance of the
RrDLINAR1(M,A) time series. In order to preserve the RrDLINAR1(M,A)
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simulations in one state as long as possible, favoring the current state of the ran-
dom environment process has been chosen, i.e. probabilities of the environment

state change are significantly smaller. Thus, pmat =

[
0.6 0.4
0.2 0.8

]
.

1.2. In this case, parameters αs, s = 1, 2, have been chosen to be smaller than the

midpoints of intervals
(

0, µs
1+maxq∈Er µq

]
, s = 1, 2. In order not to shrink these

intervals too much, parameters µs, s = 1, 2, must have relatively close values.
Hence, M = {2, 3} and A = {0.2, 0.3}. The initial state has a slight tendency
towards higher value due to the form of its distribution pvec = (0.45, 0.55), while

transition probabilities of random states have been given by pmat =

[
0.7 0.3
0.3 0.7

]
.

Again, the current state of the random environment process has been preferred,
according to values on the transition matrix main diagonal.

3.4.2 The case of three states

Unlike the previous case, three possible random states will be supposed here, i.e. E3 =
{1, 2, 3}. Again, two different parameter combinations will be distinguished.

2.1 First of all, M = {1, 2, 5} has been picked. And yet again, the case when pa-
rameters αs, s = 1, 2, 3, are close to their upper limits has been analyzed, so
A = {0.1, 0.25, 0.7}. An initial state has a slight tendency towards middle value,
due to the value of its distribution pvec = (0.3, 0.4, 0.3). A transition probability

matrix is of the form pmat =

 0.7 0.2 0.1
0.1 0.7 0.2
0.2 0.1 0.7

 . The current state of the random en-

vironment process has been preferred, according to values on the transition matrix
main diagonal.

2.2 The last parameter combination has been chosen again in the way to assign to
αs, s = 1, 2, 3, the values smaller than the midpoints of corresponding intervals(

0, µs
1+maxq∈Er µq

]
, s = 1, 2, 3. Thus,M = {2, 3, 5} and A = {0.1, 0.2, 0.4}. An initial

state is approximately fair, pvec = (0.33, 0.34, 0.33) and a transition probability
matrix significantly prefers the current state of the random environment process,

pmat =

 0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8

 .

3.4.3 Estimation results

In both of previously mentioned cases, with two or three different states, unknown pa-
rameters αs and µs, s = 1, 2, . . . , r, r = 2, 3, of the RrDLINAR1(M,A) model have
been estimated. The task has been fulfilled using YW and CLS methods. Following
the idea given in [38], the estimation of transition probabilities has been avoided, since
those are not parameters of the RrDLINAR1(M,A) model. Nevertheless, the transition
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Table 3.1: The case of 2 states.

n1 µ̂YW1 µ̂YW2 α̂YW1 α̂YW2 α̂CLS1 α̂CLS2

a) True values M = {1, 3}, A = {0.25, 0.7},

pvec = (0.5, 0.5), pmat =

[
0.6 0.4
0.2 0.8

]
.

200 0.966 2.864 0.228 0.661 0.230 0.671
St. errors 0.163 0.497 0.135 0.113 0.130 0.095

500 0.979 2.942 0.235 0.685 0.240 0.690
St. errors 0.112 0.349 0.091 0.067 0.089 0.061

1000 0.983 3.002 0.240 0.699 0.242 0.699
St. errors 0.081 0.237 0.065 0.051 0.062 0.040

5000 0.987 3.001 0.248 0.699 0.248 0.699
St. errors 0.037 0.116 0.032 0.022 0.030 0.016

10000 0.989 2.999 0.249 0.699 0.249 0.700
St. errors 0.024 0.086 0.023 0.014 0.022 0.009

b) True values M = {2, 3}, A = {0.2, 0.3},

pvec = (0.45, 0.55), pmat =

[
0.7 0.3
0.3 0.7

]
.

200 2.051 3.032 0.209 0.290 0.207 0.308
St. errors 0.273 0.367 0.113 0.120 0.110 0.116

500 2.025 2.991 0.196 0.293 0.196 0.293
St. errors 0.165 0.255 0.079 0.072 0.075 0.069

1000 2.023 2.991 0.202 0.297 0.201 0.297
St. errors 0.107 0.208 0.056 0.055 0.056 0.052

5000 1.999 3.001 0.198 0.299 0.199 0.297
St. errors 0.054 0.081 0.026 0.022 0.025 0.022

10000 2.000 3.001 0.199 0.299 0.199 0.299
St. errors 0.040 0.055 0.016 0.016 0.016 0.015
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Table 3.2: The case of 3 states.

n1 µ̂YW1 µ̂YW2 µ̂YW3 α̂YW1 α̂YW2 α̂YW3 α̂CLS1 α̂CLS2 α̂CLS3

a) True values M = {1, 2, 5}, A = {0.1, 0.25, 0.7}, pvec = (0.3, 0.4, 0.3), pmat =

 0.7 0.2 0.1
0.1 0.7 0.2
0.2 0.1 0.7

 .

200 1.029 2.102 4.956 0.114 0.262 0.694 0.114 0.262 0.668
St. errors 0.201 0.406 0.944 0.129 0.129 0.140 0.124 0.129 0.112

500 1.008 2.037 5.050 0.106 0.258 0.704 0.106 0.258 0.698
St. errors 0.132 0.249 0.695 0.084 0.091 0.103 0.085 0.088 0.082

1000 0.992 2.036 5.017 0.103 0.258 0.704 0.102 0.257 0.698
St. errors 0.089 0.173 0.520 0.061 0.060 0.077 0.060 0.058 0.056

5000 0.999 2.009 5.008 0.102 0.249 0.702 0.102 0.252 0.702
St. errors 0.034 0.072 0.215 0.029 0.029 0.032 0.029 0.028 0.025

10000 1.000 2.003 4.994 0.101 0.250 0.701 0.101 0.249 0.701
St. errors 0.024 0.052 0.163 0.019 0.019 0.025 0.019 0.019 0.017

b) True values M = {2, 3, 5}, A = {0.1, 0.2, 0.4}, pvec = (0.33, 0.34, 0.33), pmat =

 0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8

 .

200 1.977 3.015 4.936 0.109 0.180 0.389 0.105 0.175 0.387
St. errors 0.358 0.651 0.736 0.121 0.140 0.118 0.113 0.0.131 0.115

500 2.015 3.015 4.945 0.102 0.206 0.389 0.103 0.205 0.388
St. errors 0.215 0.365 0.470 0.082 0.120 0.082 0.079 0.115 0.079

1000 1.990 2.993 4.953 0.102 0.202 0.392 0.103 0.199 0.392
St. errors 0.156 0.247 0.311 0.059 0.079 0.053 0.060 0.078 0.049

5000 1.992 3.005 4.988 0.098 0.198 0.395 0.099 0.201 0.395
St. errors 0.077 0.119 0.145 0.027 0.035 0.026 0.027 0.034 0.026

10000 1.992 3.005 4.999 0.099 0.200 0.398 0.099 0.201 0.399
St. errors 0.047 0.086 0.111 0.017 0.022 0.017 0.018 0.023 0.018
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probabilities could be estimated as in Subsection 1.2.8. The newly defined model, com-
pared to DLINAR(1), has greater number of unknown parameters, which leads to better
data fitting, since the model is more flexible. On the other hand, the need for a larger
sample is evident in order to obtain the same estimation accuracy. This is because each
state has its own parameters that can be estimated only based on the part of the sample
corresponding to that state. Thus, parameter estimates have been derived for subsamples
of sizes 200, 500, 1000, 5000 and 10000. In each of these cases, hundred simulated samples
have been used, and corresponding standard errors have been calculated. All estimates
converge to true parameter values when sample sizes increase, while standard errors de-
crease towards 0. The differences between the YW and CLS estimates are negligible. It
is noticeable as well that the smaller standard errors of µ̂js

YW have appeared for smaller
values of µs. This sounds reasonable because, with lower values of the parameter µs,
lower dispersions of the time series values appear as well. Estimation results, correspond-
ing to the cases with two and three random states, are given in Table 3.1 and Table 3.2
respectively.

3.5 Application to real-life data

So far, many non-stationary time series with both positive and negative values have been
modeled using stationary models, in the absence of better solutions. One such example
is the data collected by the City of Pittsburgh Bureau of Police, which represents the dif-
ferences in number of motor vehicle thefts reported on a monthly basis to police stations
number 1608 and 2811, in Pittsburgh, Pennsylvania, USA, between January, 1990 and
December, 2001. The data sequence is given in Table 3.3. In [37], the DLINAR(1) model
was proved to be convincingly the best for this data. However, only stationary models
were considered as competitors, although the data indicates that sharp ups and downs
occasionally occur. As given in [42], it is reasonable to assume that the non-stationary
RrDLINAR1(M,A) model will be even more appropriate.

Table 3.3: Differences between motor vehicle thefts reported on a monthly basis to police stations number
1608 and 2811.

12 −1 2 3 8 −2 −3 4 4 6 5 5 5 4 4
5 4 5 4 0 1 0 1 2 3 −6 0 −1 −1 1
0 2 −1 0 1 −4 −5 −13 −4 −4 −5 −4 −6 −5 −8
−5 −5 −4 −4 −6 −5 0 1 −3 3 0 1 −2 0 0
−3 −1 −3 −3 −1 3 1 −1 0 0 −1 −1 2 1 1

1 3 0 2 1 0 0 2 1 1 −2 −2 −1 0 1
0 0 −3 0 1 −2 0 −2 2 −2 −3 2 2 2 3
2 1 −2 0 0 2 3 −3 0 −2 3 3 1 0 0
2 3 1 0 −3 −2 1 −3 −3 −3 2 3 −2 −2 1
3 1 2 0 3 2 3 2 −3

Based on the sample of size N = 144, the mean difference is y = 0.048. This proves
the fact that mean values of the motor vehicle theft counts, denoted in stations number
1608 and 2811, are approximately the same. This condition is crucial here, since it had
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been claimed earlier that both time series {X(1)
n (zn)} and {X(2)

n (zn)} must have the same
distributions.

In order to get information about the character of the observed data sequence, one can
take a look at the plots of autocorrelation and partial autocorrelation functions, given in
Figure 3.1. The figure successfully justifies the usage of INAR(1) modeling. Among all
INAR models of order 1, there is only one more model familiar so far beside DLINAR(1)
which may consist of positive and negative integer values and which, at the same time,
assumes the same distribution for {X(1)

n } and {X(2)
n }. It’s the TINAR(1) model with

symmetric Skellam marginal distribution, introduced in Section 2.1. This model will be
used as a competitor to DLINAR(1) and RrDLINAR1(M,A). To reinforce compe-
tition, the STINAR(1) model given in [6] will also be considered as competitor. Brief
notes on this model can be found within Section 1.2.7.

Figure 3.1: Autocorrelations and partial autocorrelations.

The next step is data clustering. This is how one actually obtains estimates of the cor-
responding random environment process. As explained in Subsection 1.2.8, it is assumed
that the realized value of the random environment process in n-th month is equal s, i.e.
zn = s, s ∈ Er, if the theft difference in that month is in the s-th cluster. In that way,
{zn} is fully determined. For this particular case, it is decided to divide the theft differ-
ence realizations into two clusters. For that purpose, the K-means clustering technique is
performed. Figure 3.2 provides such obtained clustering results. According to the figure,
a decision to divide the theft differences into two clusters is proved to be reasonable. In
the first cluster (triangles), one may find the differences that don’t deviate significantly
form zero. However, in two time intervals, a different behavior is noticed. Precisely,
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from August, 1990 to July, 1991 and from December, 1993 to March, 1995 the devia-
tions from zero are quite large. This suggests that environment state changes could have
happened. Hence, the theft difference realizations from these two periods are located
in the second cluster (circles). With each increase in number of clusters, at least one
cluster with very few realizations in it is obtained. This leads to frequent state changes,
which ruins any chance to successfully apply models in random environment, including
RrDLINAR1(M,A). Thus, RrDLINAR1(M,A) models with more than two different
environment states should not be discussed for this data.

Figure 3.2: K-means clustering results.

The validity of the RrDLINAR1 (M,A) model will be examined in two ways, by testing
its fitting quality and forecasting accuracy. For that purpose, the data sample is divided
into two sets, the training set and the prediction set. The training set contains the first
120 sample elements, and will be used in estimating model parameters and evaluating the
fitting quality. On the other hand, the prediction set contains the last 24 elements of the
sample and will be utilized to assess the forecasting accuracy.

3.5.1 Fitting quality evaluation

To evaluate the fitting quality, unknown model parameters µ1, µ2, α1 and α2 must be
estimated first. This was done using the corresponding YW estimators. Now, the con-
struction of the R2DLINAR1(M,A) time series {Yn(zn)} can be performed. Finally, the
RMS of differences between real-life data and modeled data is calculated and compared
to corresponding counterparts of other models. These RMS values, together with corre-
sponding YW estimates, are presented in Table 3.4. Providing the smallest RMS value,
the R2DLINAR1(M,A) model based on the two states random environment process
proved to be the best for fitting given real-life data.

The realized time series of theft differences is given in Figure 3.3, alongside with one-step
ahead predictions of R2DLINAR1(M,A) and STINAR(1) models. Predicted values of
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Table 3.4: RMS values and YW parameter estimates for INAR(1) modeling of the theft differences.

Model YW RMS
TINAR(1) α̂ = 0.333 2.690

λ̂ = 1.817
DLINAR(1) α̂ = 0.331 2.689

µ̂ = 1.881
STINAR(1) α̂ = 0.337 2.680

µ̂1 = 2.007
µ̂2 = 1.991

R2DLINAR1(M,A) α̂1 = 0.189 2.187
α̂2 = 0.808
µ̂1 = 0.815
µ̂2 = 3.648

TINAR(1) and DLINAR(1) models are omitted, since they do not differ much from
the predictions provided by STINAR(1). Obviously, both models shown in the figure
approximate well the values close to zero. A big difference in fitting quality is noticed in
realizations that deviate significantly from zero. In this case, the R2DLINAR1(M,A)
model shows much better ability to adjust to the real-life data. The higher the deviations,
the larger the benefit that R2DLINAR1(M,A) model offers in regard to STINAR(1).
This flexibility is unquestionably a repercussion of the non-stationary nature of the newly
proposed RrDLINAR1(M,A) model. At the very end, the R2DLINAR1(M,A) tra-
jectory perfectly follows the trajectory of the realized time series.

Figure 3.3: Resuts of fitting the theft difference realizations: black–real-life theft differences; red–
R2DLINAR1(M,A) predictions; blue–STINAR(1) predictions.
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3.5.2 Forecasting accuracy assessment

An assessment of the forecasting accuracy follows the same path as in [42]. First of
all, 10000 different sequences of length 24 are generated for each model discussed in
this section. In addition, all model parameters required for generating are estimated
based on the training set. These generated sequences of predictions will be compared to
the prediction set. Further, it is necessary to choose the criterion on basis of which the
predictive capacity of proposed models will be analyzed. For that purpose, the forecasting
log-score criterion (FLSC) is chosen. This criterion has already been introduced in [32],
and represents an adaptation of the more famous log-score criterion (LSC) described in
[17]. The criterion itself is given by the equality

FLSC =

n2∑
k=1

log p̂n1+k(xn1+k),

where p̂n1+k(xn1+k) denotes the estimated probability of correctly predicting the value
xn1+k taken from the prediction set, i.e.,

p̂n1+k(xn1+k) =
number of correct predictions of xn1+k

10000
.

Calculated values of the FLSC criterion for all considered models are provided in Table
3.5, whereby better forecasting provides the model with higher FLSC. According to the
table, the R2DLINAR1(M,A) model provides the most accurate forecasting, since it
has the largest FLSC value among all considered models.

Table 3.5: FLSC criterion value for the prediction set of theft differences.

TINAR(1) DLINAR(1) STINAR(1) R2DLINAR1(M,A)
FLSC −65.711 −63.981 −64.150 −63.135
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Chapter 4

Random Environment Estimation
(RENES) Method for Generalized
Random Environment INAR Models
of Higher Order

As mentioned in the thesis title, the focus of this dissertation is on INAR models based
on the random environment process. Some of the random environment INAR models,
as well as the random environment process itself, have already been presented in Chapter
1. In order to model given real-life data using this kind of models and to measure the
goodness of fit of such obtained predictions, corresponding environment states {zn} for
all real-life observations must be estimated. As noticed in Section 1.2.8, this is where the
clustering methods take place. Clustering methods are indispensable when it’s necessary
to classify the data points into several disjoint sets, so that sufficiently similar data points
belong to the same set. Each set (cluster) is observed as a specific state. Among several
clustering techniques available so far, the K-means was the one that authors preferred to
use.

The K-means clustering method was first introduced in [18]. After the RrNGINAR(1)
time series was defined in [38], the method usually gave satisfactory results in estimating
environment states of the RrNGINAR(1) model. This was especially the case when
realizations within the same environment state were sufficiently similar. However, some
shortcomings appear in situations when realizations within the same environment state
deviate significantly from each other. This happens due to the fact that K-means takes
into account only realization values. Namely, once the K-means is performed, one can
divide graphed representation of the database into strips by several horizontal lines, as
given in the lower panel of Figure 4.1. The number of strips corresponds to the number
of clusters one wants to create. All realization values in the same strip are similar to each
other and are considered to be in the same cluster, i.e. in the same environment state.
This particulary entails that all high values in the database belong to the same cluster.
Similar to this, all low values in the database belong to the same cluster as well. However,
it doesn’t have to be necessarily the case in reality. In the upper panel of Figure 4.1, the
data simulated from the R2NGINAR(1) model is presented. As may be seen, it is pos-
sible for high realizations to appear also in environment conditions different than those
assumed for high data values, so the database can no longer be divided by a horizontal
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Exact environment states of the simulated R2NGINAR(1) time series

States estimated by the application of standard K-means clustering method

Figure 4.1: Environment states of the R2NGINAR(1) simulation: different states presented with dif-
ferent symbols–a circle or a triangle. The estimated states are obviously divided by a horizontal strip,
unlike the exact states.

line. The K-means method totally rules out this possibility. To clarify additionally the
mentioned disadvantage, a vivid example follows.

COVID-19 pandemic led to the greatest global crisis of the modern age. Despite the
strict and harsh measures conducted by many nations to restrict the spread of the virus,
virus continued spreading all over the globe. Based on experiences from all continents,
weather conditions significantly affected the spread rate. In summertime, the presence of
UV light and high temperatures created an environment unsuitable for virus spreading,
and the low number of newly registered cases was appearing day after day. In autumn,
weather conditions have worsened. Hence, the increment in number of newly registered
cases on daily basis showed up. The situation changed dramatically during winter. Low
temperatures and the lack of sunlight induced the perfect environment for virus spreading,
and the number of newly registered cases kept increasing. Nevertheless, some deviations
were detected. For instance, in many regions, short time intervals with unusually high
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number of newly registered cases on daily basis appeared during the summer months.
This might be so confusing, actually. The discrepancies can be explained by the fact
that not only weather conditions affect the daily number of newly registered COVID-
19 cases, but some other undetected circumstances as well, or circumstances which are
detected but not measurable. In situations like these, the proper clustering method is
expected to show additional flexibility. It has to take into account undetected circum-
stances and keep high values (noticed in summer months) in ’summer’ cluster. This is
a difficult task for K-means. By taking into account only numerical values of the data,
K-means will recognize high summertime values as autumn (or even winter) occasions
and locate them into the wrong cluster. None of the K-means adaptations familiar so far
is capable to help either. An improved estimation method is obviously needed in this case.

After more complex random environment INAR models had emerged, the list of problems
that K-means encountered became even longer. The following difficulty is particulary re-
lated to generalized random environment INAR models of higher order, defined by (1.9).
To explain this difficulty, the simplest case with r = 2 states is observed and the simi-
larity between mean values within states is supposed (i.e. µ1 ≈ µ2), while other model
parameters differ significantly. In that case, observations within states are not that much
different and are accumulated around parallel horizontal lines that are close to each other.
In situation like this, one might expect the existence of a strip in which points from both
environment states will be represented. In other words, the border line between states
won’t be straight, but a jagged and wavy. Keeping in mind the fact that K-means method
separates clusters by straight horizontal lines, it becomes obvious that the method itself
is pretty much incapable to perform a proper separation between states. However, by
including all parameters of the model that carry information about the environment state
in the clustering process, this problem can be overcome.

A new random environment estimation (abbrev. RENES ) method, based on transforma-
tion (before applying clustering) of the data sample that corresponds to the generalized
random environment INAR model of higher order, will be presented in this chapter. The
chapter contains results given in [41]. Although the new approach is heavily relied on K-
means method, suggested transformation is going to eliminate disadvantages given above.
It should be emphasized here that the RENES method can be applied to the data corre-
sponding to any generalized random environment INAR model of higher order, with an
arbitrary marginal distribution and a thinning operator that is not necessarily a negative
binomial. Nevertheless, this chapter provides an application of the newly defined RENES
method only to the data that correspond to RrNGINAR(M,A,P) models, defined by
(1.9). For more information about RrNGINAR(M,A,P) models, see Section 1.2.9. As
one may notice from the definition of RrNGINAR(M,A,P), each of µzn , αzn and Pn car-
ries the information about environment state in which the realization xn took place, since
these parameters directly participate in model construction. To eliminate the information
loss, the main goal is to create a three-dimensional sequence based on real-life data real-
izations, that mimics the behavior of {(µzn , αzn , Pn)}∞n=1. Finally, the K-means algorithm
will be applied on such obtained three-dimensional data sequence. To avoid the confu-
sion, it is important to highlight here that the RENES method doesn’t represent a tool
for estimating the parameters of RrNGINAR(M,A,P) models, but only a new tool for
estimating {zn}. However, estimators of the RrNGINAR(M,A,P) model parameters
are defined under the assumption that {zn} is known in advance, meaning that a differ-
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Figure 4.2: Illustration of the role the ’pre-estimates’ have in estimating model parameters. Namely,
for a given data {xn(zn)} the first step is to create {(µ̃n, α̃n, P̃n)}. After that, an estimate of {zn} is
provided by K-means clustering of the three-dimensional sequence {(µ̃n, α̃n, P̃n)}. Having estimated {zn},
one obtains the estimates {(µ̂n, α̂n, P̂n)} of model parameters. In the previous approach used in [29],
K-means was applied directly on {xn(zn)} (shown by a diagonal arrow in diagram) instead of creating
pre-estimates.

ent approach for estimating {zn} will for sure imply the difference in parameter estimates.

The chapter starts with construction of the new RENES method, which overcomes dis-
advantages mentioned above. After that, suitable simulated data series are created. Ob-
serving the simulations, one may examine whether the changes in number of states and
parameter values affect the efficiency of the newly proposed method. The RENES method
is applied on simulated data and the results such obtained are compared with those ob-
tained by usage of the standard K-means method. Finally, the RENES method is applied
to the popular real-life data, alongside with K-means. In that way, two different clustering
results are obtained. To confirm the supremacy of the RENES method, a fitting quality
of corresponding RrNGINAR(M,A,P) models is examined for each clustering result.

4.1 Construction of the new RENES method

In order to construct the RENES method, a sample {Xn} = {Xn(zn)} of size N ∈ N
that corresponds to the RrNGINAR(M,A,P) time series is considered. As noticed in
[41], the main idea is to provide some kind of ’pre-estimators’ {µ̃zn}, {α̃zn} and {P̃n}
of parameter sequences {µzn}, {αzn} and {Pn}, by taking into account only on the real-
ized sample, without knowing the realizations {zn} of the random environment process.
The three-dimensional sequence {(µ̃n, α̃n, P̃n)} such obtained is supposed to mimic the
behavior of the model parameters over time. Then, clustering the three-dimensional data
{(µ̃n, α̃n, P̃n)} would prevent the information loss and produce better estimation of {zn},
compared to clustering the starting sequence {xn}.

As mentioned before, the research goal is not to introduce new estimators of model param-
eters, but to upgrade the estimation of {zn}. Given sequence of so-called ’pre-estimators’
{(µ̃n, α̃n, P̃n)} is just a helpful tool to estimate {zn}, and it does not represent an alter-
native estimate of model parameters. Model parameters have already been successfully
estimated in [29], and those results are used here as well in evaluating the RENES method.
Figure 4.2 provides an illustration of the role the ’pre-estimates’ {(µ̃n, α̃n, P̃n)} have in
estimating model parameters.
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Proposed method can be additionally improved by considering trimmed (truncated) means.
Hence, for a given vector v = (v0, v1, . . . , vk)

′ and sequence a1, a2, . . . , aN , let the function
T (an,v) be defined as

(4.1) T (an,v) =

{
an, n ≤ k or n > N − k,∑n+k

l=n−k v|l−n|al, k < n ≤ N − k,

whereby N > 2k. Coordinates of the vector v are supposed to be non-increasing positive
real numbers, i.e. v0 ≥ v1 ≥ · · · ≥ vk, vj > 0, j = 0, 1, . . . , k. Beside this, the con-

dition v0 + 2
k∑
j=1

vj = 1 must be satisfied. The trimmed mean T (an,v) thus obtained is

affected the most by the current value an. Regarding the effect of the k neighboring ele-
ments of an on both sides, it decreases when moving away from an. As mentioned in [29],
RrNGINAR(M,A,P) models demonstrate poor performances when environment states
are changing frequently. Their application make sense only if the probability of remaining
in the same state is high enough. In particular, for each q, s ∈ Er = {1, 2, ..., r}, the proba-
bility P (Zn+1 = q|Zn = q) is supposed to be greater than the probability P (Zn+1 = s|Zn =
q). It is even recommended that P (Zn+1 = q|Zn = q) >

∑
s 6=q P (Zn+1 = s|Zn = q). The

higher values of P (Zn+1 = q|Zn = q) −
∑

s 6=q P (Zn+1 = s|Zn = q) imply better model
application. If the last inequality is satisfied, then for k small enough one may assume
that all 2k + 1 neighboring elements of zn are equal with high probability in most situ-
ations, i.e. zn−k = · · · = zn = · · · = zn+k. Hence, all elements Xn−k, . . . , Xn, . . . , Xn+k

correspond to the same state zn and thus, all of them carry information about zn. As a
consequence, all pre-estimates {(µ̃l, α̃l, P̃l)}n+k

l=n−k are supposed to carry information about
zn as well. By combining them (using the trimmed mean function T ), it is expected
to get even more accurate information. In other words, it sounds reasonable to replace
{µ̃n}, {α̃n} and {P̃n} with {T (µ̃n,vm)}, {T (α̃n,va)} and {T (P̃n,vp)} for some vectors
vm, va and vp. Theoretically speaking, the mentioned vectors do not have to be the
same length. The upper limit of the vector’s length k might also be the subject of discus-
sion. Certainly, higher values of k give better pre-estimates, provided all of observations
Xn−k, . . . , Xn, . . . , Xn+k correspond to the same state. Otherwise, pre-estimates might be
even worsened. Namely, although higher values of k provide some benefit when a partic-
ular observation is surrounded by sufficient number of elements in the same state, they
will do a lot of damage when observations are located near the state change. In order to
reconcile these two opposing claims, vectors vm, va, vp of length higher than 4 won’t be
discussed at all.

In order to equalize the impact of each particular coordinate of the three-dimensional
vector (T (µ̃n,vm), T (α̃n,va), T (P̃n,vp)) on clustering procedure, it is necessary to scale
the coordinates. For that purpose, for a given element an of the sequence {an}, a function
S(an,v) defined as

S(an,v) =
T (an,v) ·N∑N
l=1 T (al,v)

assigns to an the properly scaled (normed) value of T (an,v). Furthermore, to control the
level of impact each coordinate has on the clustering procedure, three more parameters
Cm, Ca, Cp ∈ R have to be introduced. The RENES procedure ends with clustering the
three-dimensional data vector

(4.2) (CmS(µ̃n,vm), CaS(α̃n,va), CpS(P̃n,vp))
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using standard K-means. At this point, defining the starting estimators (µ̃n, α̃n, P̃n), n =
1, 2, . . . , N, in a reasonable way is the only left to do, taking into account the construction
of RrNGINAR(M,A,P) models. To determine values of the sequence {µ̃n}, the idea
already exploited in [30] is allowed to be used. Namely, keeping in mind that µs, s =
1, 2, . . . , r, represent means within clusters, one is available to set for any n = 1, 2, . . . , N
that

(4.3) µ̃n = Xn.

A fact that the partial autocorrelation function represents a useful tool for determining
the order of the time series gives a unique opportunity to predict the sequence {Pn}. Let
pzn be a maximal order allowed for particular element in the state zn. In this case, one
may set

(4.4) P̃n =


max

K=1,...,pzn
pacfK(X1, . . . X2dp+1), n ≤ dp,

max
K=1,...,pzn

pacfK(Xn−dp , . . . , Xn+dp), dp < n ≤ N − dp,

max
K=1,...,pzn

pacfK(XN−2dp , . . . , XN), n > N − dp,

where dp ∈ N and pacfK represents the partial autocorrelation function at lag K. To
maximize the accuracy of the pre-estimate P̃n, it would be ideal if all 2dp + 1 elements
of the sequence {Xn} involved in P̃n correspond to the same state zn. However, this
requirement is not demanding, since an application of the RrNGINAR(M,A,P) model
is reasonable only when the state change is an infrequent occasion.

A prediction of the thinning parameter value in moment n is heavily relied on the well
known property of the negative binomial thinning operator E (α ∗X|X) = αX. By
looking at (1.9), one may define α∗n as

α∗n =


Qn/Rn, Rn 6= 0, n > 1,

1, Qn = Rn = 0, n > 1,

max
{(

Ql
Rl

: l ∈ {2, . . . , N}, Rl > 0
)}

, otherwise,

for all n ∈ N, where Qn = (xn−T (µ̃n,vm))+ and Rn = 1
b

∑b
l=1 Ql for b = min{n− 1, P̃n}.

Notation (x)+ = max{x, 0} represents the positive part of x ∈ R. In order to avoid the
thinning parameter value greater than 1, one more step must be performed as follows:

(4.5) α̃n =
α∗n

max
l=1,...,N

α∗l
, n ∈ N.

An application of the RENES method implies an optimal choice of parameters dp, vm,
va, vp, Cm, Ca and Cp (called in sequel the RENES method parameters) based on
RrNGINARmax(M,A,P) and RrNGINAR1(M,A,P) simulations. It is crucial to dis-
tinguish the RENES method parameters from the model parameters. Section 4.2 gives
details about the choice of model parameters. On the other hand, Section 4.3 provides
results of the simulation study with such chosen model parameters and discuss how to
choose RENES method parameters.
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4.2 Simulation study—the choice of model parame-

ters

In order to test the new RENES method for estimating the random environment states,
simulated RrNGINAR(M,A,P) time series of length N = 500 are provided. Simulation
properties are such that they disable smooth application of the standard K-means method.
Precisely, the time series with similar means within states are created, while some other
model parameters differ significantly. The case with r = 2 different environment states can
be found within this section. In addition, the case with r = 3 environment states is given
in Appendix A. Further, two different combinations of model parameters are analyzed
for each of the cases. Further more, each parameter combination is supposed to generate
two different replications of the corresponding RrNGINAR(M,A,P) time series. One
of those will be used to provide optimal values of the RENES method parameters. With
the help of such obtained dp, vm, va, vp, Cm, Ca and Cp, the other replication will be
reconstructed in order to evaluate the efficiency of the proposed RENES method. Finally,
both versions of the model analyzed in Subsection 1.2.9, RrNGINARmax(M,A,P) and
RrNGINAR1(M,A,P), will be discussed simultaneously.

Here are a few notes regarding the notation used. Being a Markov chain, the random envi-
ronment process is basically depended on two factors. One of them is a vector containing
initial probabilities of being in certain state, denoted as pvec. Another is a transition
probability matrix, denoted as pmat, which contains the probability P (Zn = s|Zn−1 = q)
in the intersection of its q-th row and s-th column, for all q, s ∈ {1, . . . ,r}. One more
remark regarding the notation is needed here. Although introduced as sets,M, A and P
are all written down as vectors in the following text. This has been done to eliminate the
ambiguity and preserve the order of the states.

To create appropriate R2NGINAR(M,A,P) simulations, the following combinations of
parameters are used.

1. First of all, a similarity of means within states is assumed, while other model param-
eters are significantly different. Surrounding like this would make K-means pretty
much useless. Thus,M = (1, 1.5) is chosen. On the other hand, thinning parameters
and maximal orders within states should differ significantly. Hence, A = (0.05, 0.6)
and P = (2, 4) are selected. Bearing in mind the upper limits existence for pa-
rameters αs, s = 1, 2, the first one is chosen to be small, while the second one
is selected to be close to its upper limit. Probabilities φsj,l that correspond to the
R2NGINARmax(M,A,P) simulation are contained in the following matrices:

φ1 =

[
1 0

0.9 0.1

]
, φ2 =


1 0 0 0

0.1 0.9 0 0
0.1 0.45 0.45 0
0.1 0.1 0.4 0.4

 .
In addition, probabilities that correspond to theR2NGINAR1(M,A,P) simulation
are located in last rows of aforementioned matrices φ1 and φ2. Finally, an initial
state is nearly fair, due to the value of its distribution pvec = (0.6, 0.4). In order to
preserve the simulated R2NGINAR(M,A,P) time series in one state as long as
possible, the current state of the random environment process is preferred. In other
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words, transition probabilities out of the main diagonal are significantly smaller
than those located on the main diagonal. Thus,

pmat =

[
0.9 0.1
0.2 0.8

]
.

2. A great similarity between thinning parameters characterizes the second parameter
combination. Therewithal, the means are similar enough to make an application
of the standard K-means method difficult. A valid environment states estima-
tion will only be possible based on the values of model orders, which represents
a great test for introduced RENES method. Hence, the following parameter values
are chosen: M = (3, 5), A = (0.4, 0.5) and P = (2, 5). Further, in the case of
R2NGINARmax(M,A,P),

φ1 =

[
1 0

0.4 0.6

]
, φ2 =


1 0 0 0 0

0.2 0.8 0 0 0
0.4 0.4 0.2 0 0
0.3 0.3 0.3 0.1 0
0, 4 0.2 0.2 0.1 0.1

 .
Corresponding probabilities for the R2NGINAR1(M,A,P) simulation are con-
tained in last rows of these matrices. Since pvec = (0.5, 0.5), one may claim the ini-
tial state is fair. The transition probability matrix provides long arrays of elements
corresponding to the same state, since P (Zn+1 = q|Zn = q) > P (Zn+1 = s|Zn = q)
when q, s = 1, 2, q 6= s. Precisely,

pmat =

[
0.8 0.2
0.25 0.75

]
.

4.3 Simulation study — simulation results and selec-

tion of the RENES method parameters

The section offers a procedure for obtaining optimal values of the RENES method param-
eters, based on RrNGINAR(M,A,P) simulations with r = 2 environment states. The
procedure follows the steps given in [41] and is relied on corresponding model parameters
given in previous section. To improve the readability of the following consideration, a
procedure of obtaining dp, vm, va, vp, Cm, Ca and Cp will be fully exposed only for the
first parameter combination. Regarding the second combination, the procedure will be
omitted and only final results will be provided. As for the RrNGINAR(M,A,P) sim-
ulations with r = 3 environment states, corresponding discussion regarding the optimal
RENES method parameters is given in Appendix B.

To start the procedure, two replications of each of the correspondingR2NGINARmax(2, 4)
and R2NGINAR1(2, 4) simulations were created using the first combination of model
parameters. The first replication of each pair is used to obtain the unknown RENES
method parameters. For that purpose, one can determine the sequence {µ̃n} as suggested
in (4.3). To improve pre-estimates such obtained, a proper selection of the vector vm is
required. According to previous assumption that all Xn−k, . . . , Xn, . . . , Xn+k correspond
to the same state for k small enough, all pre-estimates µ̃n−k, . . . , µ̃n, . . . , µ̃n+k can have a
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similar contribution to T (µ̃n,vm). Hence, coordinates of the vector vm are chosen to be
as equal as possible. Eventually, v0 might be a bit higher, since it multiplies the middle
realization xn. Sequences of pre-estimates {T (µ̃n,vm)} obtained for various selections of
vm are shown in Figure 4.3 and Figure 4.4. The sequence of exact means {µn} was used
as a benchmark. To increase the readability of the plot, only the first 200 elements are
displayed.

As figures show, the usage of the vector vm managed to improve the accuracy of pre-
estimates of the sequence {µn} in both cases. With help of this technique, peaks that
deviate significantly from exact mean values have been trimmed. Foremost, in the case
of R2NGINARmax(2, 4) simulation, the best result is obtained for vm = (0.16, 0.14, 0.14,
0.14). Speaking of R2NGINAR1(2, 4) simulation, equally good results are obtained for
vm = (0.2, 0.2, 0.2) and vm = (0.16, 0.14, 0.14, 0.14), and both vectors are available to use.
In particular, the second option is chosen for this research.

A determination of {P̃n} is contained of two steps. The procedure starts with dete-
rmination of dp, mentioned in (4.4). In order to obtain the optimal value of dp, let ∆p

denotes the root mean square of differences between exact orders Pn, n = 1, 2, . . . , 500,
and corresponding estimated order values P̃n, 1, 2, . . . , 500, provided by (4.4). The error
∆p is calculated for various choices of dp and results such obtained are given in Table 4.1.
The smallest value of ∆p implies the optimal value of parameter dp. As one may conclude,
in the case of R2NGINARmax(2, 4) simulation optimal value of dp is 8 (∆p = 1.438). Sim-
ilarly, in the case of R2NGINAR1(2, 4) simulation optimal dp value is 15 (∆p = 1.371).

Table 4.1: Values of ∆p for various selections of dp.

R2NGINARmax(2, 4) R2NGINAR1(2, 4) R2NGINARmax(2, 5) R2NGINAR1(2, 5)

dp ∆p dp ∆p dp ∆p dp ∆p

5 1.478 5 1.560 5 2.033 5 2.126
6 1.456 6 1.581 6 2.138 6 2.051
7 1.450 7 1.588 7 2.219 7 2.053
8 1.438 8 1.612 8 2.165 8 2.071
9 1.480 9 1.620 9 2.171 9 2.009
10 1.518 10 1.521 10 2.111 10 2.068
11 1.503 11 1.492 11 2.123 11 2.098
12 1.456 12 1.510 12 2.084 12 2.100
13 1.475 13 1.495 13 2.082 13 2.088
14 1.482 14 1.430 14 2.034 14 2.074
15 1.474 15 1.371 15 2.077 15 2.103
16 1.495 16 1.424 16 2.041 16 2.101
17 1.512 17 1.390 17 2.015 17 2.137
18 1.441 18 1.372 18 2.051 18 2.120
19 1.457 19 1.380 19 2.057 19 2.088
20 1.440 20 1.446 20 2.064 20 2.089

It is left in the second step to determine the corresponding vector vp, i.e. to deter-
mine its coordinates and its length k for fixed optimal value of dp. Similarly as for
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Table 4.2: Optimal values of the constant dp and vectors vm, va, vp, related to the simulated
R2NGINAR(2, 4) time series.

R2NGINARmax(2, 4)
dp vm va vp
8 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14)

R2NGINAR1(2, 4)
dp vm va vp
15 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14)

.

vm, Xn−k, . . . , Xn, . . . , Xn+k are all assumed to correspond to the same state. Hence,
P̃n−k, . . . , P̃n, . . . , P̃n+k are all assumed to have almost equal contribution to T (P̃n,vp).
Thus, coordinates of vp are selected to be almost equal. Sequences of pre-estimates
{T (P̃n,vp)} obtained for various selections of vp are given in Figure 4.5 and Figure 4.6.
The exact order sequence {Pn} is observed as a benchmark.

Before an interpretation of these figures happens, one must be aware of the goal needs to
be achieved. Namely, the primary goal is to obtain order pre-estimates which provide the
highest probability of placing corresponding observations in correct clusters. More pre-
cisely, the best pre-estimate of {Pn} is not necessarily the one that most often matches the
exact order value, but the one that is close enough in most of the cases. Keeping this in
mind, the following conclusion holds. Although the pre-estimates obtained for k = 4 (red
dashed line) struggle to reach maximal orders, they stay close enough to exact order values
in most of the cases and do not make large deviations. Hence, vp = (0.16, 0.14, 0.14, 0.14)
is taken in both cases, R2NGINARmax(2, 4) and R2NGINAR1(2, 4).

Having calculated {T (µ̃n,vm)} and {P̃n}, one is able to calculate α̃n, n = 1, 2, . . . , N, as
shown in (4.5). Such obtained pre-estimates are enhanced by appropriate selection of the
vector va. For the same reasons as before, coordinates of va are chosen to be as similar as
possible. Regarding the length of va, various options are selected. Sequences {T (α̃n,va)}
obtained for such chosen va are given in Figure 4.7 and Figure 4.8. The sequence {αn}
of exact thinning parameters is used as a benchmark.

According to these figures, pre-estimates of {αn} obtained for va = (0.2, 0.2, 0.2) and
va = (0.16, 0.14, 0.14, 0.14) (dashed black and dashed red line) seem more accurate than
those obtained for va = 1 or va = (0.4, 0.3). More precisely, the sequences of pre-estimates
obtained when k = 3 and k = 4 don’t show sudden and sharp ups and downs frequently,
while the most of their values stay in a strip between α1 and α2. Behavior like this is
actually expected for a fine sequence of pre-estimates. It is hard to choose the better one,
but it seems that the plot line obtained for va = (0.16, 0.14, 0.14, 0.14) stays a bit closer
to the real parameter values. The same conclusion holds for both, R2NGINARmax(2, 4)
and R2NGINAR1(2, 4) simulation and thus, the same va = (0.16, 0.14, 0.14, 0.14) is se-
lected in both cases.

To summarize all in one place, Table 4.2 provides values of dp, vm, va and vp involved in
RENES method. One may find interesting that all three vectors vm, va and vp are of the
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maximal length k = 4 in both cases. This is not so surprising, by the way. Recall that
the transition probability matrix was set to have huge values on the main diagonal, much
higher than those out of the main diagonal. Thus, long arrays of consecutive elements
corresponding to the same state appeared, as anticipated. So, for most of pre-estimates,
it was possible to enlarge the length of corresponding vectors without including elements
from a different state. If the elements on the main diagonal had smaller values, shorten
vectors would appear.

Now, one may provide 3-dimensional sequences {T (µ̃n,vm)}, {T (α̃n,va)}, {T (P̃n,vp)},
and after that {S(µ̃n,vm)}, {S(α̃n,va)}, {S(P̃n,vp)}. Finally, it is left to determine
parameters Cm, Ca and Cp mentioned in (4.2), by which one controls the level of impact
each {S(µ̃n,vm)}, {S(α̃n,va)}, {S(P̃n,vp)} has on the clustering procedure. For that
cause, a modified procedure already used to determine dp is applied. As given in [41], for
each Cm = i, Ca = j, Cp = l, i, j, l = 1, 2, . . . , 10, a clustering of the three-dimensional
data sequence

{(CmS(µ̃n,vm), CaS(α̃n,va), CpS(P̃n,vp))}
is performed. In this way, thousand different estimates of the environment state sequence
{zn} are provided. To select the best one, estimates such obtained are compared to the
sequence of exact states. The highest number of exactly estimated states will reveal
the best combination of parameters Cm, Ca, Cp. In the case of R2NGINARmax(2, 4)
simulation, the best result in random environment estimation is obtained for Cm = 6,
Ca = 2, Cp = 9, having 328 estimated states equal to corresponding exact states. On
the other hand, the result obtained by standard K-means managed to have 301 exactly
estimated states. A comparative overview of exact states, states obtained by standard
K-means and states obtained by usage of the RENES method is provided by Figure 4.9.
Again, only the first 200 states are given in each graph.

Obviously, the RENES method gives better results in data clustering. Except the higher
number of correctly estimated states, two more benefits are important to highlight. First
of all, the newly proposed RENES method produces much longer data series that corre-
spond to the same state. Keeping in mind that the random environment INAR models
show poor performances when environment states are changing frequently, mentioned im-
provement seems convenient. The second, the newly proposed RENES method doesn’t
make a crisp data division by horizontal lines, which was the case with standard K-means
method. The RENES method allows the data elements with low values to belong the
cluster with predominantly high values, and vice versa. This property makes the method
appropriate for clustering the data where, beside a detected predominant environment
condition, some hidden circumstances also have an impact on time series realizations.

Similar conclusions hold in the case of R2NGINAR1(2, 4) simulation. After performing
the clustering of three-dimensional data

{(CmS(µ̃n,vm), CaS(α̃n,va), CpS(P̃n,vp))}

for each Cm = i, Ca = j, Cp = l, i, j, l = 1, 2, . . . , 10, the best result is obtained for
Cm = 8, Ca = 2, Cp = 3. The RENES method with such chosen Cm, Ca and Cp provides
326 estimated states equal to corresponding exact states. Compared to this, the standard
K-means managed to reach 309 correctly estimated states. Figure 4.10 provides a com-
parative overview of the exact states, states obtained by standard K-means method and
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Exact states of the R2NGINARmax(2, 4) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 8, vm =
(0.16, 0.14, 0.14, 0.14), va = (0.16, 0.14, 0.14, 0.14), vp =
(0.16, 0.14, 0.14, 0.14), Cm = 6, Ca = 2, Cp = 9.

Figure 4.9: Environment states of the R2NGINARmax(2, 4) simulation.
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states obtained by newly introduced RENES method in the case of R2NGINAR1(2, 4)
simulation. Figure undoubtedly confirms the dominance of the RENES method in regard
to the standard K-means method. All benefits achieved with R2NGINARmax(2, 4) sim-
ulation are achieved here as well.

As shown in [41], the next goal is to confirm that the RENES clustering method is more
appropriate for R2NGINAR(M,A,P) model application than the standard K-means.
Unused replications of R2NGINARmax(2, 4) and R2NGINAR1(2, 4) time series will be
helpful for this purpose. These data are particularly convenient because they had not been
exploited earlier to estimate the RENES method parameters. First of all, the standard
K-means clustering method and the newly proposed RENES method are both applied
on given unused replications. Further, the data reconstruction using the correspond-
ing R2NGINARmax(2, 4) or R2NGINAR1(2, 4) model may happen for each clustering
result, whereby corresponding parameters of the model are obtained by conditional max-
imum likelihood (CML) estimation procedure. The fitting quality is measured by calcu-
lating RMS of differences between simulated data and their reconstructions. Table 4.3
shows modeling results obtained after applying the standard K-means and the RENES
clustering technique. Results confirm that the advantage of the RENES method is un-
questionable. Namely, the usage of the standard K-means method leads to unexpectedly
high RMS values (RMS = 1.988 for R2NGINARmax(2, 4) model and RMS = 1.835
for R2NGINAR1(2, 4) model). High RMS values certify an assumption presented in
the introduction of this chapter which claims that K-means is not a useful tool for clus-
tering the data corresponding to the RrINAR(M,A,P) time series with similar means
within states. On contrary to that, the usage of the newly proposed RENES method
leads to much more acceptable results (RMS = 1.528 for R2NGINARmax(2, 4) model
and RMS = 1.477 for R2NGINAR1(2, 4) model).

Table 4.3: RMS values and CML parameter estimates obtained after reconstruction of unused data
sequences corresponding to the R2NGINARmax(2, 4) and R2NGINAR1(2, 4) time series.

R2NGINARmax(2, 4) R2NGINAR1(2, 4)

Clustering CML RMS CML RMS

Regular M̂ = (0.543, 4.167) 1.988 M̂ = (0.712, 5.434) 1.835

K-means Â = (0.001, 0.402) Â = (0.253, 0.385)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.938, 0.062)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.327 0.331 0.342 0
0.251 0.201 0.243 0.305

 φ̂2 = (0.251, 0.200, 0.247, 0.302)

M̂ = (0.902, 1.588) 1.528 M̂ = (0.930, 1.411) 1.477

RENES Â = (0.002, 0.308) Â = (0.172, 0.584)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.951, 0.049)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.328 0.330 0.342 0
0.246 0.200 0.241 0.313

 φ̂2 = (0.243, 0.205, 0.230, 0.322)

Regarding the second combination of model parameters, exactly the same steps are taken.
First of all, corresponding R2NGINARmax(2, 5) and R2NGINAR1(2, 5) simulations are
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Exact states of the R2NGINAR1(2, 4) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 15, vm =
(0.16, 0.14, 0.14, 0.14), va = (0.16, 0.14, 0.14, 0.14), vp =
(0.16, 0.14, 0.14, 0.14), Cm = 8, Ca = 2, Cp = 3.

Figure 4.10: Environment states of the R2NGINAR1(2, 4) simulation.
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created, two replications of each. By applying the procedure equivalent to the one pre-
sented for R2NGINAR(2, 4) simulations, optimal values of the RENES method param-
eters are obtained from the first replication. Corresponding results can be found in Table
4.4. After the environment states have been estimated using both K-means method and
RENES method, unused replications are reconstructed for each clustering result using
R2NGINARmax(2, 5) or R2NGINAR1(2, 5) model. The RMS-s of differences between
simulated data and their reconstructions are provided in Table 4.5.

Table 4.4: Optimal values of the RENES method parameters related to simulated R2NGINAR(2, 5)
time series.

R2NGINARmax(2, 5)
dp vm va vp Cm Ca Cp
17 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3) 4 2 3

R2NGINAR1(2, 5)
dp vm va vp Cm Ca Cp
9 (0.2,0.2,0.2) (0.16,0.14,0.14,0.14) (0.4,0.3) 9 6 7

Table 4.5: RMS values and CML parameter estimates obtained after reconstruction of unused data
sequences corresponding to the R2NGINARmax(2, 5) and R2NGINAR1(2, 5) time series.

R2NGINARmax(2, 5) R2NGINAR1(2, 5)

Clustering CML RMS CML RMS

Regular M̂ = (2.481, 14.169) 4.029 M̂ = (2.421, 13.472) 4.140

K-means Â = (0.079, 0.132) Â = (0.166, 0.201)

φ̂1 =

[
1 0

0.007 0.993

]
φ̂1 = (0.024, 0.976)

φ̂2 =


1 0 0 0 0

0.002 0.998 0 0 0
0.398 0.401 0.201 0 0
0.298 0.301 0.301 0.100 0
0.197 0.198 0.200 0.200 0.205

 φ̂2 = (0.203, 0.202, 0.202, 0.200, 0.193)

M̂ = (3.551, 5.488) 3.421 M̂ = (2.852, 5.006) 3.528

RENES Â = (0.011, 0.434) Â = (0.175, 0.291)

φ̂1 =

[
1 0

0.005 0.995

]
φ̂1 = (0.364, 0.636)

φ̂2 =


1 0 0 0 0

0.001 0.999 0 0 0
0.388 0.398 0.214 0 0
0.299 0.298 0.298 0.105 0
0.174 0.202 0.202 0.200 0.222

 φ̂2 = (0.175, 0.200, 0.203, 0.220, 0.202)

In general, the higher RMS values are noticed when simulations are dictated by the sec-
ond parameter combination. Such a conclusion makes sense due to the slightly higher
simulated values in this case. The aforesaid implies a higher benefit in RMS values
when RENES clustering method is applied. A comparison of the corresponding param-
eter estimates also leads to some interesting conclusions. Namely, an application of the
RENES method provides much more accurate estimates of means. A bit more accurate
estimates of thinning parameters are also noticed in this case. More accurate estimates
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of mentioned parameters eventually lead to significant benefits in RMS values when the
RENES clustering method is used.

4.4 Application to real-life data

Although the COVID-19 pandemic has shaken the world from its foundations, pandemic
monitoring has provided numerous data sets suitable for testing statistical models and
techniques. One of such data set has been used to confirm the efficiency of the newly
introduced RENES clustering method. Same as in [41], a data sequence that represents
the number of newly detected COVID-19 cases on daily basis in Mauritius between March
18, 2020 and April 25, 2021 has been chosen. This data can be found on the website Data
Europa (http://www.data.europa.eu). Figure 4.11 provides the plot of newly detected
COVID-19 cases in given period. As figure shows, the number of newly detected cases
was kept within acceptable limits in most of the time. Moreover, many days have passed
without a single newly infected inhabitant. Sudden jumps were occasional and isolated.
Nevertheless, unexpected results showed up between March 22, 2020 and April 9, 2020,
as well as between March 6, 2021 and April 9, 2021. As can be seen in Figure 4.11, the
number of newly detected cases of the virus oscillated dramatically during these two peri-
ods. Sharp and frequent ups and downs started to occur. In other words, very high values
began to appear followed by sudden decrements, and vice versa. These observations lead
to an assumption that changes in the environment state might have happened.

Figure 4.11: Number of newly detected COVID-19 cases on the island of Mauritius on daily basis.

Figure 4.12 provides the plot of the partial autocorrelation function. As figure shows, all
orders up to order 5 are significant. To remind, Section 4.3 discusses the impact of the
RENES method on data modeling by R2NGINAR(2, 4) and R2NGINAR(2, 5) models.
Since maximal orders of these models don’t exceed 5, they are suitable to be applied on
given real-life data. Before models application, the standard K-means and the RENES
method are both applied in order to provide estimates of the sequence {zn}. Optimal
values of the RENES method parameters are taken from Section 4.3. Clustering results
thus obtained are given in Figure 4.13. As one may notice, the RENES method man-
aged to recognize the uncommon behavior of the time series during two mentioned time
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intervals and showed a great success in placing values that were realized during these
periods in a separate cluster. On the other hand, K-means also recognized the uncommon
behavior, but the recognition quality is far lower. To be precise, the periods of uncommon
behavior are significantly shortened, and many realizations belonging in reality to these
periods are recognized by K-means as regular. This implies that the usage of the RENES
method could make selected R2NGINAR(M,A,P) models even more effective.

Figure 4.12: PACF for the data that represent a daily number of new COVID-19 cases on the island of
Mauritius.

After {zn} has been estimated, the fitting quality of given models (R2NGINAR(2, 4)
and R2NGINAR(2, 5)) can be examined for each clustering result. The RMS of differ-
ences between observations and their predicted values is used as a measure of goodness
of fit. RMS-s obtained after application of R2NGINARmax(2, 4), R2NGINAR1(2, 4),
R2NGINARmax(2, 5) and R2NGINAR1(2, 5) model are provided in Table 4.6. As can be
seen, a choice of the clustering method significantly affects the fitting quality. Namely, all
selected models produce much lower RMS values after applying the RENES method. All
of the above proves the supremacy of the RENES method and confirms benefits of its use.

Finally, one more fact needs to be emphasized. To make sure that R2NGINAR(M,A,P)
models are the most appropriate for modeling given real-life data, many other INAR
models of stationary or non-stationary nature have also been considered. However, a
confirmation of the fact that R2NGINAR(M,A,P) models are the best for given data
is not the aim of this chapter. Similar has already been done in [29]. The aim is to
confirm that the RENES method really contributes to a more efficient application of the
R2NGINAR(M,A,P) models. For this reason, modeling results obtained using other
INAR models are omitted here and can be found in Appendix C.
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Standard K-means

RENES method

Figure 4.13: Clustering results for the real-life data.
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Table 4.6: RMS values and CML parameter estimates obtained after reconstruction of chosen real-life
data using two differentR2NGINARmax(M,A,P) andR2NGINAR1(M,A,P) models (both clustering
methods are considered).

R2NGINARmax(2, 4) R2NGINAR1(2, 4)

Clustering CML RMS CML RMS

Regular M̂ = (0.493, 30.191) 4.259 M̂ = (0.489, 30.191) 4.216

K-means Â = (0.001, 0.480) Â = (0.259, 0.473)

φ̂1 =

[
1 0

0.001 0.999

]
φ̂1 = (0.018, 0.982)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.328 0.328 0.344 0
0.248 0.197 0.241 0.314

 φ̂2 = (0.262, 0.260, 0.200, 0.278)

M̂ = (1.102, 14.790) 3.870 M̂ = (1.521, 14.792) 3.827

RENES Â = (0.001, 0.512) Â = (0.248, 0.936)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.048, 0.952)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.328 0.327 0.345 0
0.190 0.206 0.249 0.355

 φ̂2 = (0.247, 0.244, 0.239, 0.270)

R2NGINARmax(2, 5) R2NGINAR1(2, 5)

Clustering CML RMS CML RMS

Regular M̂ = (0.493, 30.192) 4.150 M̂ = (0.492, 30.192) 4.152

K-means Â = (0.001, 0.481) Â = (0.201, 0.472)

φ̂1 =

[
1 0

0.001 0.999

]
φ̂1 = (0.021, 0.979)

φ̂2 =


1 0 0 0 0

0.001 0.999 0 0 0
0.398 0.398 0.204 0 0
0.298 0.300 0.301 0.101 0
0.198 0.201 0.198 0.200 0.203

 φ̂2 = (0.201, 0.201, 0.200, 0.200, 0.198)

M̂ = (1.051, 13.998) 3.768 M̂ = (1.102, 14.098) 3.797

RENES Â = (0.002, 0.534) Â = (0.198, 0.493)

φ̂1 =

[
1 0

0.999 0.001

]
φ̂1 = (0.016, 0.984)

φ̂2 =


1 0 0 0 0

0.001 0.999 0 0 0
0.399 0.397 0.204 0 0
0.298 0.300 0.298 0.104 0
0.123 0.201 0.201 0.202 0.273

 φ̂2 = (0.198, 0.200, 0.203, 0.200, 0.199)
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Conclusion

This dissertation provides the results of research in the field of INAR models, with
special reference to INAR models with both positive and negative values and random
environment INAR models. Proposed improvements have enabled the introduction of
non-stationarity into INAR models with values from the entire set of integers. For this
purpose, a concept of random environment, given in [38], served as a useful tool. In
that way, new possibilities in modeling the data that are not necessarily above the axis
denoting the time component in the Cartesian coordinate system, but oscillate around
that axis, have been provided. Beside this, innovations have been also introduced in the
environment state estimation procedure. Namely, it’s well known that the environment
state estimation of each individual realization is one of the crucial steps in modeling real-
life processes by usage of models in random environment. For that purpose, the K-means
clustering method is most commonly used. However, K-means doesn’t show acceptable
performances in clustering realizations corresponding to the random environment INAR
time series of higher order. The main disadvantage of this method is the fact that the
value of the time series realization is the only parameter involved in clustering. In order
to make the environment state estimates as accurate as possible, the K-means adaptation
took place.

At the beginning, an overview of the INAR models development was provided, starting
with models based on the binomial thinning operator. Further, special attention was paid
to the models that are of great importance for the dissertation itself. This primarily refers
to INAR models that can take both positive and negative values, as well as to nonnega-
tive INAR models in random environment. The random environment process itself was
also presented. Furthermore, some useful theorems and distributions were given, in order
of better understanding the content that has been followed.

After that, a detailed analysis of some particular integer-valued autoregressive time series
with values over entire set Z was presented and some of their properties were examined.
In particular, the possibility of extracting and predicting latent components of the true
INAR time series with skewed Skellam marginal distribution was approached. First, the
theoretical foundations on which the time series itself is based were given. Appropriate
formulas for extracting and predicting latent (hidden) components were derived, provided
that realizations of the time series had been known. Formulas such obtained were tested
on some real-life data sequences. Results showed a satisfactory goodness of fit for both,
latent components extractions and their one-step ahead predictions.

Further, the dissertation was dealing with possibilities of involving non-stationarity into
INAR models with positive and negative values. The main idea in accomplishing this
goal was to combine two familiar kinds of models: stationary INAR models with values
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over entire Z and nonnegative INAR models in random environment. In particular, a
new non-stationary INAR model with both positive and negative values was defined by
combining models described in [37] and [39], when P = {1}. Mentioned model is the first
of this kind introduced so far. A thinning operator needed to define the model was bor-
rowed from [37]. In order to estimate unknown parameters of the model, an adaptation
of the estimation technique given in [38] was used. Adaptation efficiency was tested on
simulated data sequences. Such obtained model showed a remarkable success in applica-
tion to real-life data, compared to other models that made sense to apply to the given data.

Finally, author discussed the problem of improving the K-means clustering method, in
order to make it more suitable for clustering the data that correspond to the random
environment INAR time series of higher order. Although the similar idea can be ap-
plied to an arbitrary random environment INAR model of higher order, with an ar-
bitrary marginal distribution and thinning operator, the dissertation provides the K-
means improvement particulary suitable for the data that correspond to the generalized
RrNGINAR(M,A,P) time series. The improved method, named RENES, follows the
behavior of all parameters of the RrNGINAR(M,A,P) model that carry information
about belonging to the particular environment state. Efficiency of such improved clus-
tering method was tested on simulated data and compared to clustering results obtained
using the standard K-means method. The progress in number of correctly estimated
states and longer arrays of consecutive realizations corresponding to the same state were
detected. At the very end, a supremacy of the newly proposed RENES method over
standard K-means is confirmed on popular real-life data.

Further research might be performed into several directions. Regarding the non-stationary
INAR models with positive and negative values, generalized models of order higher than
1 might be created. Further, improvements might be achieved by setting some other
marginal distribution, or a distribution of the counting sequence involved in thinning
operator. Furthermore, random environment process might be defined in some other
way. On the other hand, K-means improvement might be constructed to suit the data
corresponding to some other random environment INAR time series of higher order. Also,
improving other clustering methods might be useful.
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[29] Laketa, P. N., Nastić, A. S., Ristić, M. M. (2018) Generalized random environment
INAR models of higher order, Mediterranean Journal of Mathematics 15(1):9.

[30] Laketa, P. N. Crossed bivariate integer-valued autoregressive process based on bivari-
ate random environment process, Communications in Statistics-Theory and Methods,
(to appear).

[31] Latour, A., Truquet, L. (2009) An integer-valued bilinear type model, Research report
available on http://hal.archives-ouvertes.fr/hal-00373409.

[32] Liu, Z., Li, Q., Zhu, F. (2021) Semiparametric integer-valued autoregressive models
on Z, The Canadian Journal of Statistics 49(4), 1317-1337.

[33] Mann, H. B., Wald, A. (1943) On stochastic limit and order relationships, The Annals
of Mathematical Statistics 14(3), 217-226.

[34] McKenzie, E. (1985) Some simple models for discrete variate time series, Journal of
the American Water Resources Association 21(4), 645-650.
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Appendix

Appendix A. The choice of model parameters in case the

of RrNGINAR(M,A,P) simulations with 3 environment states

To create simulated R3NGINAR(M,A,P) time series, the following parameter combi-
nations are used.

1. Same as before, the first combination assumes similar means within states, i.e.
M = (0.5, 1, 1.5). Besides, thinning parameters αs, s = 1, 2, 3, differ significantly,
having the values A = (0.1, 0.35, 0.6). The same holds for vector of maximal orders
P = (2, 4, 2), while corresponding probability matrices are of the form

φ1 =

[
1 0

0.9 0.1

]
, φ2 =


1 0 0 0

0.2 0.8 0 0
0.2 0.4 0.4 0
0.2 0.2 0.3 0.3

 , φ3 =

[
1 0

0.1 0.9

]
.

Probability matrices given above are used to create R3NGINARmax(M,A,P) sim-
ulations. Corresponding probabilities related to R3NGINAR1(M,A,P) simula-
tions are located in last rows of given matrices. One short clarification is needed
here. Bearing in mind that the first and third state have the same maximal orders,
one may seem that these two states do not ’differ enough’. However, the analysis
of other parameters concludes the opposite. Corresponding means, as well as corre-
sponding thinning parameters, do differ significantly. On the other hand, the first
and second state have much more similar mean values, but corresponding thinning
parameters and maximal orders differ significantly. The same holds for the second
and third state. This surrounding, where various properties of elements must be
taken into account to obtain the proper clustering results, seems perfect for RENES
method to show its potential.

Further, an initial state is nearly fair, due to the value of its distribution pvec =
(0.3, 0.4, 0.3), while the transition probability matrix favors simulations to remain
in the same state, having the values on the main diagonal significantly higher than

those out of the main diagonal. Hence, pmat =

 0.7 0.2 0.1
0.1 0.8 0.1
0.2 0.2 0.6

 .
2. An interesting challenge for RENES method is also created with the second combi-

nation of model parameters. Namely, parameters are set as follows: M = (2, 4, 6),
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A = (0.2, 0.3, 0.6) and P = (2, 4, 5). Therewithal,

φ1 =

[
1 0

0.7 0.3

]
, φ2 =

 1 0 0 0
0.5 0.5 0 0
0.3 0.3 0.4 0
0.3 0.2 0.2 0.3

 , φ3 =


1 0 0 0 0

0.4 0.6 0 0 0
0.2 0.5 0.3 0 0
0.25 0.3 0.2 0.25 0
0.2 0.2 0.3 0.1 0.2

 .
It can be noticed that means within states grow progressively, even though the
jumps are not that much high. The similarity of thinning parameters character-
izes the first and second state, while corresponding orders differ significantly. On
the other hand, the second and third state have similar orders, while corresponding
thinning parameters differ significantly. Finally, all parameters of the first and third
state differ significantly. To place the realization at moment n in the appropriate
cluster, it is crucial for clustering method to possess information about the behavior
of all parameters of the model at the same moment.

The distribution of an initial state is pvec = (0.35, 0.35, 0.3) and a transition proba-
bility matrix is of the form

pmat =

 0.9 0.05 0.05
0.2 0.7 0.1
0.1 0.1 0.8

 .
Appendix B. Simulation results and selection of the RENES

method parameters in the case of RrNGINAR(M,A,P) simula-

tions with 3 environment states

A testing of the newly defined RENES method on simulated data with 3 environment
states follows the same path as in Section 4.3. Namely, as it was the case with the 2
environment state simulations, R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2) time
series with 3 environment states are simulated first (two replications of each). After that,
one may start with determination of the RENES method parameters. The sequence
{µ̃n} is once again obtained using equality (4.3). In order to improve the sequence of pre-
estimates obtained in this manner, an optimal selection of vm is of importance. Figure
B.1 and Figure B.2 provide sequences of pre-estimates {T (µ̃n,vm)} obtained for various
selections of vm. Again, the sequence of exact means {µn} is taken as a benchmark.

According to figures, the best pre-estimate sequence is obtained by usage of the vector
vm = (0.16, 0.14, 0.14, 0.14). The same conclusion holds for both simulations with 3 envi-
ronment states, R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2). Beside the capability
of trimming high peaks, a significance of such obtained pre-estimates is especially reflected
through its ability of adequately assessing means within the second (middle) state.

In order to carry out an estimation of the sequence {Pn}, optimal value of the parameter
dp needs to be determined first. Again, various dp values are selected and corresponding
values of the error ∆p are calculated. All corresponding results are given in Table B.1.
In the case of R3NGINARmax(2, 4, 2) simulation, the best result is obtained for dp = 17
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(∆p = 1.415), while in the case of R3NGINAR1(2, 4, 2) simulation optimal result is ob-
tained for dp = 18 (∆p = 1.407).

Table B.1: Values of ∆p for various selections of dp.

R3NGINARmax(2, 4, 2) R3NGINAR1(2, 4, 2) R3NGINARmax(2, 4, 5) R3NGINAR1(2, 4, 5)
dp ∆p dp ∆p dp ∆p dp ∆p

5 1.570 5 1.604 5 1.924 5 1.880
6 1.568 6 1.694 6 1.914 6 1.905
7 1.572 7 1.581 7 1.911 7 1.917
8 1.522 8 1.579 8 1.881 8 1.931
9 1.567 9 1.568 9 1.822 9 1.886
10 1.555 10 1.595 10 1.784 10 1.860
11 1.519 11 1.564 11 1.748 11 1.849
12 1.502 12 1.571 12 1.730 12 1.889
13 1.503 13 1.535 13 1.773 13 1.880
14 1.463 14 1.473 14 1.806 14 1.904
15 1.424 15 1.473 15 1.797 15 1.910
16 1.429 16 1.455 16 1.809 16 1.915
17 1.415 17 1.473 17 1.822 17 1.949
18 1.417 18 1.407 18 1.843 18 1.943
19 1.419 19 1.454 19 1.853 19 1.915
20 1.417 20 1.432 20 1.874 20 1.883

For fixed optimal value of dp, a corresponding vector vp have to be provided. Figure B.3
and Figure B.4 provide sequences of pre-estimates {T (P̃n,vp)} obtained for various selec-
tions of vp. The sequence of exact orders {Pn} will be the benchmark here. According to
figures, pre-estimate sequences show similar behavior when k = 2, k = 3 and k = 4. Each
of them offers similar chance to obtain the correct clustering of the particular observation.
Also, each of those sequences is a way better then the one obtained for k = 1, having no
frequent and sharp ups and downs, which would lead to the erroneous clustering result.
Due to the simplicity of the method, k = 2 is preferred, i.e. vp = (0.4, 0.3) is taken in
both cases.

Provided {T (µ̃n,vm)} and {P̃n} enable one to determine α̃n, n ∈ N, using (4.5). Same
as before, a suitable form of the vector va can significantly improve such obtained pre-
estimates. Figure B.5 and Figure B.6 show sequences of pre-estimates {T (α̃n,va)} ob-
tained for various selections of va. The sequence of exact thinning parameters {αn} is
chosen to be a benchmark.

As can be noticed, a sequence of pre-estimates obtained for k = 4 shows better fitting
compared to other sequences. It oscillates between α1 and α3 most of the time, with
particulary good assessment of α2. Just a few sharp jumps are detected. In other words,
pre-estimates rarely exceed α3 (the highest thinning parameter value), and even when they
do, overruns are bearable. The same holds for both simulations, R3NGINARmax(2, 4, 2)
and R3NGINAR1(2, 4, 2). Thus, va = (0.16, 0.14, 0.14, 0.14) is taken in both cases.

To sum up, Table B.2 contains the RENES method parameters dp, vm, va and vp related
to the simulated R3NGINAR(2, 4, 2) time series. It remains to determine Cm, Ca and
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Table B.2: Optimal values of the constant dp and vectors vm, va, vp, related to the simulated
R3NGINAR(2, 4, 2) time series.

R3NGINARmax(2, 4, 2)
dp vm va vp
17 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3)

R3NGINAR1(2, 4, 2)
dp vm va vp
18 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3)

Cp, by which one controls the level of impact each {S(µ̃n,vm)}, {S(α̃n,va)}, {S(P̃n,vp)}
has on the clustering procedure. For that purpose, the clustering of

{(CmS(µ̃n,vm), CaS(α̃n,va), CpS(P̃n,vp))}

is performed for all Cm, Ca, Cp = 1, 2, . . . , 10. Thousand different estimates of the environ-
ment state sequence {zn} are provided in this way. In the case of R3NGINARmax(2, 4, 2)
simulation, the best estimation result is obtained for Cm = 9, Ca = 7 and Cp = 2 with 209
estimated states equal to corresponding exact states. On the other hand, the standard
K-means managed to reach 155 exactly estimated states, which is a significant deteriora-
tion. Figure B.7 offers a comparative overview of exact states, states obtained by standard
K-means and states obtained by usage of the newly proposed RENES method. The same
path is followed for obtaining Ca, Ca and Cp in the case of R3NGINAR1(2, 4, 2) sim-
ulation. Values Cm = 6, Ca = 1 and Cp = 8 provide the best estimation result with
216 estimated states equal to corresponding exact states. Compared to that, the stan-
dard K-means reached only 153 exactly estimated states. Figure B.8 gives a comparative
overview of exact states, states obtained by standard K-means and states obtained by
usage of the RENES method.

As in the case of simulations with 2 environment states, some improvements that RENES
method offers in regard to the standard K-means are noticed. The higher number of
exactly estimated states has been already discussed. Beside this, one might notice the
newly proposed RENES method creates much longer sequences of consecutive elements
corresponding to the same state. This improvement implies fruitful application of all
RrINAR models, including RrINAR(M,A,P). Further, it is possible to find very high
or very low values in any of three given states. This feature allows the RENES method to
properly cluster even those realizations with uncommon behavior in regard to the state
in which they find themselves. Furthermore, a possibility of having equal realizations
in different states is one of the improvements. This property additionally increases the
flexibility of the RENES method and makes it more applicable in regard to the standard
K-means.

It is left to check out the level of benefit one can get by applying the RENES method
instead of K-means. Unused replications of the simulated R3NGINARmax(2, 4, 2) and
R3NGINAR1(2, 4, 2) time series are exploited for that purpose. Same as before, the stan-
dard K-means and the RENES method are both applied on the data and corresponding
unknown model parameters are obtained with the help of CML procedure. For each clus-
tering result singularly, corresponding R3NGINARmax(2, 4, 2) or R3NGINAR1(2, 4, 2)
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Exact states of the R3NGINARmax(2, 4, 2) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 17, vm =
(0.16, 0.14, 0.14, 0.14), va = (0.16, 0.14, 0.14, 0.14), vp = (0.4, 0.3), Cm =
9, Ca = 7, Cp = 2

Figure B.7: Environment states of the R3NGINARmax(2, 4, 2) simulation.
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Exact states of the R3NGINAR1(2, 4, 2) simulation

States obtained by standard K-means clustering method

States obtained by RENES method for dp = 18, vm =
(0.16, 0.14, 0.14, 0.14), va = (0.16, 0.14, 0.14, 0.14), vp = (0.4, 0.3), Cm =
6, Ca = 1, Cp = 8

Figure B.8: Environment states of the R3NGINAR1(2, 4, 2) simulation.
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model is utilized to reconstruct unused replications. A fitting quality of each recon-
struction is measured by calculating the RMS of differences between simulated data and
modeled data. Such obtained results are provided in Table B.3. Obviously, a benefit
of applying the RENES method is still perceptible, although significantly lesser than in
the case of simulations with 2 environment states. Modeled data based on the standard
K-means clustering method produced the following RMS-s: RMS = 1.284 in the case of
R3NGINARmax(2, 4, 2) simulation and RMS=1.470 in the case of R3NGINAR1(2, 4, 2)
simulation. On the other hand, modeled data based on the newly proposed RENES
method provided the following: RMS=1.148 in the case of R3NGINARmax(2, 4, 2) simu-
lation and RMS=1.369 in the case of R3NGINAR1(2, 4, 2) simulation. The lesser benefit
is expected actually, bearing in mind that none of the clustering methods reached even
half of exactly estimated states. Regarding the model parameters, estimates are quite
similar actually. An exception is the vector of means, which is more accurately estimated
after the RENES clustering is performed.

Table B.3: RMS values and CML parameter estimates obtained after reconstruction of unused data
sequences corresponding to the R3NGINARmax(2, 4, 2) and R3NGINAR1(2, 4, 2) time series.

R3NGINARmax(2, 4, 2) R3NGINAR1(2, 4, 2)

Clustering CML RMS CML RMS

Regular M̂ = (0.323, 2.307, 5.277) 1.284 M̂ = (0.522, 3.557, 7.778) 1.470

K-means Â = (0.052, 0.187, 0.218) Â = (0.051, 0.202, 0.436)

φ̂1 =

[
1 0

0.893 0.107

]
φ̂1 = (0.999, 0.001)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.329 0.332 0.339 0
0.221 0.201 0.241 0.337

 φ̂2 = (0.248, 0.202, 0.240, 0.310)

φ̂3 =

[
1 0

0.001 0.999

]
φ̂3 = (0.001, 0.999)

M̂ = (0.502, 1.202, 1.501) 1.148 M̂ = (0.502, 1.160, 1.448) 1.369

RENES Â = (0.198, 0.327, 0.320) Â = (0.091, 0.212, 0.367)

φ̂1 =

[
1 0

0.982 0.018

]
φ̂1 = (0.753, 0.247)

φ̂2 =


1 0 0 0

0.001 0.999 0 0
0.325 0.333 0.342 0
0.242 0.202 0.241 0.315

 φ̂2 = (0.255, 0.210, 0.248, 0.287)

φ̂3 =

[
1 0

0.001 0.999

]
φ̂3 = (0.140, 0.860)

An effectiveness of the introduced RENES method is additionally confirmed by utiliz-
ing R3NGINARmax(2, 4, 5) and R3NGINAR1(2, 4, 5) simulations, based on the second
combination of model parameters from Appendix A. Each simulation is created in two
replications. The first replication is used to provide the RENES method parameters. The
same procedure described in previous paragraphs is followed again. Table B.4 offers such
obtained optimal values of dp, vm, va vp, Cm, Ca and Cp.

Optimally selected parameters dp, vm, va vp, Cm, Ca and Cp make the RENES method
totally ready to use. Alongside with K-means, RENES is applied on unused replications.
Reconstructions of those unused replications have taken place for each clustering result,
using corresponding R3NGINARmax(2, 4, 5) or R3NGINAR1(2, 4, 5) model. A fitting
quality of each reconstruction is measured in the same way as earlier and presented in
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Table B.4: Optimal values of the RENES method parameters related to the R3NGINAR(2, 4, 5) time
series.

R3NGINARmax(2, 4, 5)
dp vm va vp Cm Ca Cp
12 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3) 10 3 1

R3NGINAR1(2, 4, 5)
dp vm va vp Cm Ca Cp
11 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3) 7 5 2

Table B.5. A level of benefit perceived after application of the RENES method is trully
satisfactory, bearing in mind the benefits given in Table B.3. Benefits are mostly generated
by more accurate estimates of the mean values.

Table B.5: RMS values and CML parameter estimates obtained after reconstruction of unused data
sequences corresponding to the R3NGINARmax(2, 4, 5) and R3NGINAR1(2, 4, 5) time series.

R3NGINARmax(2, 4, 5) R3NGINAR1(2, 4, 5)

Clustering CML RMS CML RMS

Regular M̂ = (0.759, 4.419, 11.409) 2.108 M̂ = (0.769, 5.059, 14.624) 2.352

K-means Â = (0.176, 0.301, 0.298) Â = (0.163, 0.201, 0.301)

φ̂1 =

[
1 0

0.009 0.991

]
φ̂1 = (0.008, 0.992)

φ̂2 =


1 0 0 0

0.967 0.033 0 0
0.297 0.301 0.402 0
0.298 0.301 0.301 0.100

 φ̂2 = (0.303, 0.301, 0.300, 0.096)

φ̂3 =


1 0 0 0 0

0.001 0.999 0 0 0
0.398 0.398 0.204 0 0
0.298 0.301 0.298 0.103 0
0.198 0.198 0.200 0.202 0.202

 φ̂3 = (0.201, 0.201, 0.200, 0.203, 0.195)

M̂ = (2.497, 4.498, 6.510) 1.718 M̂ = (2.368, 4.425, 6.494) 1.976

RENES Â = (0.297, 0.301, 0.423) Â = (0.161, 0.197, 0.472)

φ̂1 =

[
1 0

0.001 0.999

]
φ̂1 = (0.448, 0.552)

φ̂2 =


1 0 0 0

0.478 0.522 0 0
0.297 0.298 0.405 0
0.297 0.301 0.298 0.104

 φ̂2 = (0.293, 0.197, 0.260, 0.250)

φ̂3 =


1 0 0 0 0

0.001 0.999 0 0 0
0.398 0.400 0.202 0 0
0.298 0.301 0.301 0.100 0
0.198 0.198 0.200 0.202 0.202

 φ̂3 = (0.238, 0.161, 0.250, 0.162, 0.189)

Appendix C. Modeling results obtained using various INAR

models with stationary or non-stationary nature

Results of applying numerous INAR models with stationary or non-stationary nature can
be found within this appendix. Many of them have been already introduced in Chapter 1.
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Like R2NGINAR(2, 4) and R2NGINAR(2, 5), all these models are applied to the data
that represents the number of newly detected COVID-19 cases on daily basis in Mauri-
tius between March 18, 2020 and April 25, 2021. For each model, RMS of differences
between real data and modeled data is calculated. As for stationary models, the following
options are considered: PoINAR(1) model given in [2], GPQINAR(1) model from [4],
GINAR(1) model presented in [3], NGINAR(1) model described in [43], NGINAR(p)
model (p = 2, 3, 4, 5) shown in [40] and NBRCINAR(1) defined by [50]. Beside these,
several non-stationary models are taken into account: R2NGINAR(1) model discussed
in [38] and R2NGINAR(p) models given in [39], whereby p = 2, 3, 4, 5.

Table C.1 and Table C.2 offer RMS values calculated for each given model. RMS-
s that correspond to stationary models are presented in Table C.1. In addition, the
non-stationary R2NGINAR(1) model is also included in this table. Table C.2 provides
RMS-s acquired for R2NGINARmax(p) and R2NGINAR1(p) models of various orders.
As can be seen, stationary models provide the highest RMS values. A significant progress
is achieved by involving the concept of random environment with two environment states.
This supports a hypothesis that observed time series really took place in two environment
states. However, neither R2NGINAR(1) model nor R2NGINAR(p) models (for p =
2, 3, 4, 5) managed to achieve lower RMS-s than those provided by R2NGINAR(2, 5)
(see Table 4.6). Hence, it can be concluded that R2NGINAR(M,A,P) models are
indeed the best for chosen real-life data.

Table C.1: RMS values and CML parameter estimates obtained after reconstruction of the chosen
real-life data using various INAR models.

Model CML RMS Model CML RMS

PoINAR(1) λ̂ = 2.061 6.903 GPQINAR(1) λ̂ = 0.421 7.096

α̂ = 0.308 θ̂ = 0.824
ρ̂ = 0.196

GINAR(1) q̂ = 0.828 7.027 NGINAR(1) µ̂ = 4.572 6.922
α̂ = 0.285 α̂ = 0.366

NGINAR(2) µ̂ = 4.572 8.637 NGINAR(3) µ̂ = 4.572 8.678
α̂ = 0.013 α̂ = 0.012
p̂ = 0.183 p̂ = 0.185

NGINAR(4) µ̂ = 4.572 8.680 NGINAR(5) µ̂ = 4.572 8.670
α̂ = 0.012 α̂ = 0.017
p̂ = 0.140 p̂ = 0.138

NBRCINAR(1) p̂ = 0.153 7.260 RrNGINAR(1) M̂ = (1.843, 10.946) 5.744
ρ̂ = 0.492 α̂ = 0.144
n̂ = 0.512
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Table C.2: RMS values and CML parameter estimates obtained after reconstruction of the chosen
real-life data using R2NGINARmax and R2NGINAR1 models of various orders.

R2NGINARmax(2) R2NGINAR1(2)

CML RMS CML RMS

M̂ = (0.911, 7.203) 6.407 M̂ = (0.912, 7.203) 6.408
α̂ = 0.106 α̂ = 0.106

φ̂ =

[
1 0

0.426 0.574

]
φ̂ = (0.426, 0.574)

R2NGINARmax(3) R2NGINAR1(3)

CML RMS CML RMS

M̂ = (0.722, 30.148) 4.205 M̂ = (0.832, 29.111) 4.203
α̂ = 0.008 α̂ = 0.009

φ̂ =

 1 0 0
0.998 0.002 0
0.246 0.366 0.388

 φ̂ = (0.351, 0.438, 0.211)

R2NGINARmax(4) R2NGINAR1(4)

CML RMS CML RMS

M̂ = (0.703, 30.181) 4.211 M̂ = (0.709, 30.007) 4.201
α̂ = 0.008 α̂ = 0.008

φ̂ =


1 0 0 0

0.969 0.031 0 0
0.331 0.388 0.281 0
0.332 0.234 0.432 0.002

 φ̂ = (0.264, 0.451, 0.130, 0.155)

R2NGINARmax(5) R2NGINAR1(5)

CML RMS CML RMS

M̂ = (0.661, 30.180) 4.172 M̂ = (0.668, 30.178) 4.168
α̂ = 0.008 α̂ = 0.008

φ̂ =


1 0 0 0 0

0.821 0.179 0 0 0
0.331 0.394 0.275 0 0
0.238 0.195 0.334 0.233 0
0.001 0.245 0.161 0.345 0.248

 φ̂ = (0.257, 0.433, 0.130, 0.141, 0.039)
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2003, as a bearer of Vuk Karadžić award (perfect GPA and awards in mathematics com-
petitions). He graduated from high school ”Prva kragujevačka gimnazija” in Kragujevac,
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13-16, 2021. (Book of abstracts-p. 40)








